Surface Integrity of LM6 Aluminum Metal Matrix Composite when Machined with High Speed Steel and Uncoated Carbide Cutting Tools

Authors

  • Mohd Hadzley Abu Bakar Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka (UTeM) Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Raja Izamshah Raja Abdullah Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka (UTeM) Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Mohd Amran Md. Ali Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka (UTeM) Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Mohd Shahir Kasim Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka (UTeM) Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Mohd Amri Sulaiman Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka (UTeM) Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Siti Sarah Nadia Ahmad Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka (UTeM) Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Nurul Fatin Mohamad Raffi Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka (UTeM) Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

DOI:

https://doi.org/10.15282/jmes.6.2014.11.0081

Keywords:

Machining; metal matrix composite; aluminum; surface integrity

Abstract

Metal matrix composite (MMC) is a combination of two or more materials in a metal matrix, and is being widely used nowadays due to its excellent properties. This paper presents the surface integrity of LM6 aluminum MMC when machined with two different cutting tools; high speed steel (HSS) and uncoated carbide. The experiments were carried out with a constant cutting speed, feed rate and axial depth of cut, but differ in the radial depth of cut under dry cutting conditions. Results indicated that machining LM6 with uncoated carbide cutting tools provides a lower surface roughness and fine surface profile compared to HSS cutting tools, due to its edge stability. A lower radial depth of cut produced a fine surface finish and vice versa. Most of the machined surface was dominated by the feed mark effect due to path overlap from the cutting tool. This study is expected to provide a database of suitable cutting tools and cutting parameters for machining MMC based materials.

References

Adebisi, A. A., Maleque, M. A., & Rahman, M. M. (2011). Metal matrix composite brake rotor: Historical development and product life cycle analysis. International Journal of Automotive and Mechanical Engineering, 4, 471-480.

Aeyzarq Muhammad Hadzreel, M. R., & Siti Rabiatull Aisha, I. (2013). Effect of reinforcement alignment on the properties of polymer matrix composite. Journal of Mechanical Engineering and Sciences, 4, 548-554.

Ala-Kleme, S., Kivikytö-Reponen, P., Liimatainen, J., Hellman, J., & Hannula, S.-P. (2006). Abrasive wear properties of metal matrix composites produced by hot isostatic pressing. Paper presented at the Proceedings of the Estonian Academy of Sciences, Engineering.

Alauddin, M., El Baradie, M. A., & Hashmi, M. S. J. (1995). Computer-aided analysis of a surface-roughness model for end milling. Journal of materials processing technology, 55(2), 123-127.

Arokiadass, R., Palaniradja, K., & Alagumoorthi, N. (2011). Effect of process parameters on surface roughness in end milling of al-sic mmc. International Journal of Engineering, Science and Technology, 4(1), 276-284.

Baptista, R., & Antune Simões, J. F. (2000). Three and five axes milling of sculptured surfaces. Journal of materials processing technology, 103(3), 398-403.

Bhaskar, H. B., & Sharief, A. (2012). Effect of solutionizing on dry sliding wear of al2024-beryl metal matrix composite. Journal of Mechanical Engineering and Sciences, 3, 281-290.

Conceição António, C. A., & Paulo Davim, J. (2002). Optimal cutting conditions in turning of particulate metal matrix composites based on experiment and a genetic search model. Composites Part A: Applied Science and Manufacturing, 33(2), 213-219.

Hogmark, S., & Olsson, M. (2005). Wear mechanisms of hss cutting tools. SME Technical Paper, 1-14.

Kadirgama, K., Noor, M. M., Rahman, M. M., Bakar, R. A., & Hossein, A.-E. (2009). Fourth order torque prediction model in end milling Journal of Applied Sciences (Vol. 9, pp. 2431-2437).

Kadirgama, K., Noor, M. M., Rahman, M. M., Rejab, M. R. M., Haron, C. H. C., & Abou-El-Hossein, K. A. (2009). Surface roughness prediction model of 6061-t6 aluminium alloy machining using statistical method. European Journal of Scientific Research, 25(2), 250-256.

Lai, S. W., & Chung, D. D. L. (1994). Phase distribution and associated mechanical property distribution in silicon carbide particle-reinforced aluminium fabricated by liquid metal infiltration. Journal of Materials Science, 29(11), 2998-3016.

Ozben, T., Kilickap, E., & Çakır, O. (2008). Investigation of mechanical and machinability properties of sic particle reinforced al-mmc. Journal of materials processing technology, 198(1–3), 220-225.

Paulo Davim, J., & Monteiro Baptista, A. (2000). Relationship between cutting force and pcd cutting tool wear in machining silicon carbide reinforced aluminium. Journal of materials processing technology, 103(3), 417-423.

Rahman, M. M., Kadirgama, K., Noor, M. M., Rejab, M. R. M., Bakar, R. A., & Harun, W. S. W. (2009). An experimental investigation into the effect of minimum quality lubricant on cutting temperature for machinability of aisi 9310 steel alloy. European Journal of Scientific Research, 29(4), 502-508.

Rahman, M. M., Khan, M. A. R., Kadirgama, K., Noor, M. M., & Bakar, R. A. (2011) Optimization of machining parameters on tool wear rate of ti-6al-4v through edm using copper tungsten electrode: A statistical approach. Vol. 152-153 (pp. 1595-1602).

Rahman, M. M., Khan, M. M. A., & Dhar, N. R. (2009). An experimental investigation into the effect of minimum quality lubricant on cutting temperature for machinability of aisi 9310 steel alloy. European Journal of Scientific Research, 29(4), 502-508.

Suresh Kumar Reddy, N., Kwang-Sup, S., & Yang, M. (2008). Experimental study of surface integrity during end milling of al/sic particulate metal–matrix composites. Journal of materials processing technology, 201(1–3), 574-579.

Zhang, Z. F., Zhang, L. C., & Mai, Y. W. (1995). Wear of ceramic particle-reinforced metal-matrix composites. Journal of Materials Science, 30(8), 1961-1966.

Downloads

Published

2014-06-30

How to Cite

[1]
Mohd Hadzley Abu Bakar, “Surface Integrity of LM6 Aluminum Metal Matrix Composite when Machined with High Speed Steel and Uncoated Carbide Cutting Tools”, J. Mech. Eng. Sci., vol. 6, no. 1, pp. 854–862, Jun. 2014.

Issue

Section

Article