Investigation of microstructural and mechanical properties of AA1050-AZ91D dissimilar friction stir welding

Authors

  • Oyindamola Kayode Department of Mechanical Engineering Science, University of Johannesburg, 2006 Auckland Park Kingsway, Johannesburg, South Africa. Phone: +27747010070
  • Esther Titilayo Akinlabi Pan African University for Life and Earth Sciences (PAULESI), Ibadan, 200284, Nigeria

DOI:

https://doi.org/10.15282/jmes.15.3.2021.11.0655

Keywords:

Friction stir welding, aluminium alloy, magnesium alloy, dissimilar welding, microstructural analysis, mechanical characterization

Abstract

Joining of aluminium and magnesium alloys frequently pose significant challenges to the extent where joining may seem impossible, due to differences in the physical, metallurgical, and chemical properties of the materials. Friction stir welding is a solid-state welding technique which uses a non-consumable tool to join metals. This study examines the dissimilar friction stir welding of 3 mm thick AA1050 and AZ91D alloy sheets. Successful defect-free joints were achieved at rotational speeds of 400 rpm and 600 rpm, and a constant traverse speed of 50 mm/min. The metallurgical investigations used to characterize the microstructure of the welds are optical microscopy (OM), scanning electron microscope (SEM) and X-ray diffraction (XRD). The microstructures of the samples show distinct morphology attributed to their different rotational speeds. However, Al3Mg2 intermetallics (IMCs) phase was detected in the white bands present in both weld samples. The IMCs were formed through solid-state diffusion. The mechanical properties characterizations includes the microhardness profiles and tensile testing. The variation in the rotational speeds do not have a significant effect on the microhardness distribution of the weld samples. The tensile strength of the dissimilar weld improved substantially with the presence of an interpenetration feature (IPF).

References

J. Hirsch, “Aluminium in innovative light-weight car design,” 2011, doi: 10.2320/matertrans.L-MZ201132.

M. Wilhelm, “Materials used in automobile manufacture - current state and perspectives,” J. Phys., vol. 3, no. 7 pt 1, pp. 31–40, 1993, doi: 10.1051/jp4:1993703.

M. Goede, M. Stehlin, L. Rafflenbeul, G. Kopp, and E. Beeh, “Super Light Car-lightweight construction thanks to a multi-material design and function integration,” Eur. Transp. Res. Rev., 2009, doi: 10.1007/s12544-008-0001-2.

J. J. Michalek, P. Y. Papalambros, and S. J. Skerlos, “A study of fuel efficiency and emission policy impact on optimal vehicle design decisions,” J. Mech. Des. Trans. ASME, vol. 126, no. 6, pp. 1062–1070, 2004, doi: 10.1115/1.1804195.

G. Davies, “Future trends in automotive body materials,” in Materials for Automobile Bodies, 2003.

N. Kumar, W. Yuan, and R. S. R. S. Mishra, Friction Stir Welding of Dissimilar Alloys and Materials. 2015.

B. Mansoor, A. Dorbane, G. Ayoub, and A. Imad, “Friction stir welding of AZ31B magnesium alloy with 6061-T6 aluminum alloy: Influence of processing parameters on microstructure and mechanical properties,” in Friction Stir Welding and Processing VIII, R. S. Mishra, M. W. Mahoney, Y. Sato, and Y. Hovanski, Eds. Cham: Springer International Publishing, 2016, pp. 259–266.

L. H. Shah, N. H. Othman, and A. Gerlich, “Review of research progress on aluminium–magnesium dissimilar friction stir welding,” Sci. Technol. Weld. Join., vol. 23, no. 3, pp. 256–270, 2018, doi: 10.1080/13621718.2017.1370193.

W. M. Thomas, E. D. Nicholas, J. C. Needhan, M. G. Murch, P. Temple-Smith, and C. J. Dawes, “International patent application PCT/GB92/02203 and GB patent application 9125978.8,” UK Pat. Off. London, 1991.

D. Lohwasser and Z. Chen, “Introduction,” in Friction Stir Welding: From Basics to Applications, 2009.

M. K. Besharati Givi and P. Asadi, “1 - General introduction BT - Advances in Friction-Stir Welding and Processing,” in Woodhead Publishing Series in Welding and Other Joining Technologies, 2014.

N. Yamamoto, J. Liao, S. Watanabe, and K. Nakata, “Effect of intermetallic compound layer on tensile strength of dissimilar friction-stir weld of a high strength Mg alloy and Al alloy,” Mater. Trans., vol. 50, no. 12, pp. 2833–2838, 2009, doi: 10.2320/matertrans.M2009289.

Y. S. Sato, S. H. C. Park, M. Michiuchi, and H. Kokawa, “Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys,” Scr. Mater., 2004, doi: 10.1016/j.scriptamat.2004.02.002.

B. Fu, G. Qin, F. Li, X. Meng, J. Zhang, and C. Wu, “Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy,” J. Mater. Process. Technol., 2015, doi: 10.1016/j.jmatprotec.2014.11.039.

A. Dorbane, B. Mansoor, G. Ayoub, V. C. Shunmugasamy, and A. Imad, “Mechanical, microstructural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061,” Mater. Sci. Eng. A, 2016, doi: 10.1016/j.msea.2015.11.019.

A. C. Somasekharan and L. E. Murr, “Characterization of complex, solid-state flow and mixing in the friction-stir welding (FSW) of aluminum alloy 6061-T6 to magnesium alloy AZ91D using color metallography,” J. Mater. Sci., vol. 41, no. 16, pp. 5365–5370, 2006, doi: 10.1007/s10853-006-0342-y.

A. Masoudian, A. Tahaei, A. Shakiba, F. Sharifianjazi, and J. A. Mohandesi, “Microstructure and mechanical properties of friction stir weld of dissimilar AZ31-O magnesium alloy to 6061-T6 aluminum alloy,” Trans. Nonferrous Met. Soc. China (English Ed., 2014, doi: 10.1016/S1003-6326(14)63194-0.

Y. J. Kwon, I. Shigematsu, and N. Saito, “Dissimilar friction stir welding between magnesium and aluminum alloys,” Mater. Lett., vol. 62, no. 23, pp. 3827–3829, 2008, doi: 10.1016/j.matlet.2008.04.080.

Y. Yan, D. T. Zhang, C. Qiu, and W. Zhang, “Dissimilar friction stir welding between 5052 aluminum alloy and AZ31 magnesium alloy,” Trans. Nonferrous Met. Soc. China (English Ed., 2010, doi: 10.1016/S1003-6326(10)60550-X.

V. Firouzdor and S. Kou, “Al-to-Mg friction stir welding: Effect of material position, travel speed, and rotation speed,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 41, no. 11, pp. 2914–2935, 2010, doi: 10.1007/s11661-010-0340-1.

V. Firouzdor and S. Kou, “Formation of liquid and intermetallics in Al-to-Mg friction stir welding,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 41, no. 12, pp. 3238–3251, 2010, doi: 10.1007/s11661-010-0366-4.

ASTM E384-05a, “Standard Test Method for Microindentation Hardness of Materials,” ASTM Int., vol. 14, pp. 1–24, 2005, doi: 10.1520/E0384-05A.

A. Standard, “E8/E8M-13a,” Stand. Test Methods Tens. Test. Met. Mater. ASTM Int. West Conshohocken, PA, 2013.

C. G. Rhodes, M. W. Mahoney, W. H. Bingel, R. A. Spurling, and C. C. Bampton, “Effects of friction stir welding on microstructure of 7075 aluminum,” Scr. Mater., 1997, doi: 10.1016/S1359-6462(96)00344-2.

Y. S. Sato, H. Kokawa, M. Enomoto, and S. Jogan, “Microstructural evolution of 6063 aluminum during friction-stir welding,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 30, no. 9, pp. 2429–2437, 1999, doi: 10.1007/s11661-999-0251-1.

M. A. Mofid, A. Abdollah-Zadeh, and F. M. Ghaini, “The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy,” Mater. Des., vol. 36, pp. 161–167, 2012.

X. Meng, Y. Jin, S. Ji, and D. Yan, “Improving friction stir weldability of Al/Mg alloys via ultrasonically diminishing pin adhesion,” J. Mater. Sci. Technol., vol. 34, no. 10, pp. 1817–1822, 2018, doi: 10.1016/j.jmst.2018.02.022.

H. Shi et al., “Intermetallic compounds in the banded structure and their effect on mechanical properties of Al/Mg dissimilar friction stir welding joints,” J. Mater. Sci. Technol., vol. 33, no. 4, pp. 359–366, 2017, doi: 10.1016/j.jmst.2016.05.006.

P. Venkateswaran and A. P. Reynolds, “Factors affecting the properties of friction stir welds between aluminum and magnesium alloys,” Mater. Sci. Eng. A, vol. 545, pp. 26–37, 2012, doi: 10.1016/j.msea.2012.02.069.

Y. C. Chen and K. Nakata, “Friction stir lap joining aluminum and magnesium alloys,” Scr. Mater., 2008, doi: 10.1016/j.scriptamat.2007.10.033.

Downloads

Published

2021-09-19 — Updated on 2021-09-19

Versions

How to Cite

[1]
O. Kayode and E. T. Akinlabi, “Investigation of microstructural and mechanical properties of AA1050-AZ91D dissimilar friction stir welding”, J. Mech. Eng. Sci., vol. 15, no. 3, pp. 8332–8343, Sep. 2021.