Effects of tool shoulder geometry on mechanical properties and microstructure of friction-stir welded joints of AA5083-0 aluminium alloys

Authors

  • Francisco Ortega Universidad Autónoma del Caribe. Grupo IMTEF. Cl 90 # 46-112, Barranquilla, Colombia
  • William Fernandez Universidad Autónoma del Caribe. Grupo IMTEF. Cl 90 # 46-112, Barranquilla, Colombia
  • Juan Felipe Santa Instituto Tecnológico Metropolitano – ITM. Grupo MATYER. Medellín, Colombia
  • Jimy Unfried-Silgado Universidad de Córdoba. Departamento de Ingeniería mecánica. Grupo ICT. 230002, Cra 6 No. 77- 305, Montería - Córdoba, Colombia https://orcid.org/0000-0002-8503-4183

DOI:

https://doi.org/10.15282/jmes.14.4.2020.17.0591

Keywords:

Friction stir welding, AA5083 aluminium alloys, thermal distribution, microstructure, process parameters

Abstract

Shoulder geometry is an important geometrical feature of tool design in friction stir welding since it has a strong effect on heat generation and material flow. In this paper the effect of shoulder geometry of tool on mechanical properties, microstructure evolution, and thermal history of friction stir welded joints of AA5083-O aluminium alloy. Two different shoulder geometries of tool named concave and featured (concentric circles) were used, both with cylindrical threaded pin. A set of samples were fabricated using a milling machine and a factorial experimental design to estimate the effects of process parameters (rotational and welding speed) and shoulder geometry on welded joints. Tensile strength, hardness, and microstructure evolution were experimentally measured. These observations were complemented with results obtained from a finite element modelling to calculate thermal history in welded joints. The results showed that the combination of revolution pitch R-value and shoulder geometry of tool were the most significant factors, affecting to mechanical properties, thermal behaviour, and microstructure evolution. The best tensile properties were obtained with a featured shoulder tool using 1400 rpm and 16 mm.min-1, and 1085 rpm and 11 mm.min-1 for rotational and welding speed. The same parameter combination resulted in a joint efficiency of 70% and 65%, respectively. In addition, the results of evaluation using an ANOVA analysis with fixed factors showed that increasing R-values produces statistically significant differences in ultimate strength (Sut) values.

References

J. R. Davis, “ASM Specialty Handbook: Aluminum and Aluminum Alloys,” ASM Int., 1993.

T. E. M. D. S. George, Handbook of Aluminum Volume 1 Physical Metallurgy and Processes. 1969.

P. E. Philip A. Schweitzer, METALLIC MATERIALS Physics, Mechanical and Corrosion Properties. 2003.

A. K. Vasudevan and R. D. Doherty, Aluminum Alloys: Contemporary Research and Applications. 1989.

J. Zander and R. Sandström, “Modelling technological properties of commercial wrought aluminium alloys,” Materials & Design., 2009, doi: 10.1016/j.matdes.2009.02.004.

E. Rastkerdar, M. Shamanian, and A. Saatchi, “Taguchi optimization of pulsed current GTA welding parameters for improved corrosion resistance of 5083 aluminum welds,” Journal of Materials Engineering and Performance., 2013, doi: 10.1007/s11665-012-0346-5.

E. E. N. Nuñez, J. U. Silgado, J. E. T. Salcedo, and A. J. Ramírez, “Influence of gas mixtures Ar-He and Ar-He-O2 on weldability of aluminum alloy AA5083- O using automated GMAW-P,” Journal Soldagem & Inspeção, 2014, doi: 10.1590/0104-9224/SI1903.06.

P. L. Threadgilll, A. J. Leonard, H. R. Shercliff, and P. J. Withers, “Friction stir welding of aluminium alloys,” International Materials Reviews, 2009, doi: 10.1179/174328009X411136.

W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith, and C. J. Dawes, “GB Patent application no. 9125978.8,” 1991.

R. Nandan, T. DebRoy, and H. K. D. H. Bhadeshia, “Recent advances in friction-stir welding - Process, weldment structure and properties,” Progress in Materials Science. 2008, doi: 10.1016/j.pmatsci.2008.05.001.

H. Bin Chen, K. Yan, T. Lin, S. Ben Chen, C. Y. Jiang, and Y. Zhao, “The investigation of typical welding defects for 5456 aluminum alloy friction stir welds,” Materials Science and Engineering: A, 2006, doi: 10.1016/j.msea.2006.06.056.

R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Materials Science and Engineering R: Reports. 2005, doi: 10.1016/j.mser.2005.07.001.

S. Amini, M. M. Nazari, and A. Rezaei, “Bending vibrational tool for friction stir welding process,” International Journal of Advanced Manufacturing Technology, 2016, doi: 10.1007/s00170-015-7834-3.

R. Kumar, K. Singh, and S. Pandey, “Process forces and heat input as function of process parameters in AA5083 friction stir welds,” Transactions of Nonferrous Metals Society of China (English Ed., 2012, doi: 10.1016/S1003-6326(11)61173-4.

S. Jannet, P. K. Mathews, and R. Raja, “Optimization of process parameters of friction stir welded AA 5083-O aluminum alloy using Response Surface Methodology,” Bulletin of the Polish Academy of Sciences: Technical Sciences, 2015, doi: 10.1515/bpasts-2015-0097.

M. S. Han, S. J. Lee, J. C. Park, S. C. Ko, Y. Bin Woo, and S. J. Kim, “Optimum condition by mechanical characteristic evaluation in friction stir welding for 5083-O Al alloy,” Transactions of Nonferrous Metals Society of China (English Ed., 2009, doi: 10.1016/S1003-6326(10)60238-5.

H. Taheri et al., “Investigation of nondestructive testing methods for friction stirwelding,” Metals. 2019, doi: 10.3390/met9060624.

M. Imam et al., “Deformation characteristics and microstructural evolution in friction stir welding of thick 5083 aluminum alloy,” International Journal of Advanced Manufacturing Technology, 2018, doi: 10.1007/s00170-018-2521-9.

T. Hirata et al., “Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy,” Materials Science and Engineering A, 2007, doi: 10.1016/j.msea.2006.12.079.

D. Klobčar, L. Kosec, A. Pietras, and A. Smolej, “Friction-stir welding of aluminium alloy 5083,” Materials Technology, 2012.

R. S. Thube, “Effect of Tool Pin Profile and Welding Parameters on Friction Stir Processing Zone, Tensile Properties and Micro-hardness of AA5083 Joints Produced by Friction Stir Welding,” International Journal of Engineering and Advanced Technology, 2014.

H. Fujii, L. Cui, M. Maeda, and K. Nogi, “Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys,” Materials Science and Engineering: A, 2006, doi: 10.1016/j.msea.2005.11.045.

Z. W. Chen, T. Pasang, and Y. Qi, “Shear flow and formation of Nugget zone during friction stir welding of aluminium alloy 5083-O,” Materials Science and Engineering A, 2008, doi: 10.1016/j.msea.2007.05.074.

K. J. Colligan and R. S. Mishra, “A conceptual model for the process variables related to heat generation in friction stir welding of aluminum,” Scripta Materialia, 2008, doi: 10.1016/j.scriptamat.2007.10.015.

J. K. Paik, “Mechanical properties of friction stir welded aluminum alloys 5083 and 5383,” International Journal of Naval Architecture and Ocean Engineering, 2009, doi: 10.3744/JNAOE.2009.1.1.039.

D. Kim et al., “Numerical simulation of friction stir butt welding process for AA5083-H18 sheets,” European Journal of Mechanics - A/Solids, 2010, doi: 10.1016/j.euromechsol.2009.10.006.

V. Joshi, K. Balasubramaniam, and R. V Prakash, “Study of Defects in Friction Stir Welded Aa 5083 By Radiography , Ultrasonic and Phased Array Ultrasonic Technique,” National Seminar & Exhibition on Non-Destructive Evaluation, 2011.

H. Lombard, D. G. Hattingh, A. Steuwer, and M. N. James, “Optimising FSW process parameters to minimise defects and maximise fatigue life in 5083-H321 aluminium alloy,” Engineering Fracture Mechanics., 2008, doi: 10.1016/j.engfracmech.2007.01.026.

R. Leal and A. Loureiro, “Defects formation in friction stir welding of aluminium alloys,” 2004, doi: 10.4028/www.scientific.net/msf.455-456.299.

D. H. Choi, B. W. Ahn, D. J. Quesnel, and S. B. Jung, “Behavior of β phase (Al3Mg2) in AA 5083 during friction stir welding,” Intermetallics, 2013, doi: 10.1016/j.intermet.2012.12.004.

R. Goswami, G. Spanos, P. S. Pao, and R. L. Holtz, “Precipitation behavior of the β phase in Al-5083,” Materials Science and Engineering: A 2010, doi: 10.1016/j.msea.2009.10.007.

J. Unfried-Silgado, A. Torres-Ardila, J. C. Carrasco-García, and J. Rodríguez-Fernández, “Effects of shoulder geometry of tool on microstructure and mechanical properties of friction stir welded joints of AA1100 aluminum alloy,” DYNA, vol. 84, no. 200, 2017, doi: 10.15446/dyna.v84n200.55787.

J. F. Villegas, A. M. Guarín, and J. Unfried-Silgado, “A Coupled Rigid-viscoplastic Numerical Modeling for Evaluating Effects of Shoulder Geometry on Friction Stir-welded Aluminum Alloys,” International Journal of Engineering, Transactions B: Applications 2019, doi: 10.5829/ije.2019.32.02b.17.

T. R. McNelley, S. Swaminathan, and J. Q. Su, “Recrystallization mechanisms during friction stir welding/processing of aluminum alloys,” Scripta Materialia, 2008, doi: 10.1016/j.scriptamat.2007.09.064.

P. K. Sahu and S. Pal, “Mechanical properties of dissimilar thickness aluminium alloy weld by single/double pass FSW,” Journal of Materials Processing Technology., 2017, doi: 10.1016/j.jmatprotec.2017.01.009.

Downloads

Published

2020-12-22

How to Cite

[1]
F. Ortega, W. Fernandez, J. F. Santa, and J. Unfried-Silgado, “Effects of tool shoulder geometry on mechanical properties and microstructure of friction-stir welded joints of AA5083-0 aluminium alloys”, J. Mech. Eng. Sci., vol. 14, no. 4, pp. 7507–7519, Dec. 2020.