Effect of backward injection with combined hole on film colling performance

Authors

  • Fatima Ben Ali Kouchih Laboratoire d'aéro-hydrodynamique navale, Département de Génie Maritime, Université des Science et de la Technologie d'Oran Mohamed Boudiaf, USTO-MB, Oran, 31000 Algérie. Phone: +213077914896
  • K. Boualem Laboratoire d'aéro-hydrodynamique navale, Département de Génie Maritime, Université des Science et de la Technologie d'Oran Mohamed Boudiaf, USTO-MB, Oran, 31000 Algérie Phone: +213077914896
  • A. Azzi Laboratoire d'aéro-hydrodynamique navale, Département de Génie Maritime, Université des Science et de la Technologie d'Oran Mohamed Boudiaf, USTO-MB, Oran, 31000 Algérie. Phone: +213077914896

DOI:

https://doi.org/10.15282/jmes.15.3.2021.18.0662

Keywords:

Film cooling effectiveness, forward injection, backward injection, fan-shaped hole, combined hole

Abstract

This study investigates the film cooling performance and flow features of backward injection with combined hole. This concept is evaluated by comparison to forward injection with combined hole and other forms with both injections, forward and backward. The shapes are namely, cylindrical hole, conical hole and fan-shaped hole. The eight configurations are computed for three blowing ratios M=0.5, 1.0 and 1.5. The air coolant was injected through holes inclined at 35° and 155° for forward and backward injection respectively. The lateral averaged film cooling effectiveness and the distribution of adiabatic film cooling efficiency are studied using commercial software ANSYS- CFX. In addition, several velocity vectors and contours are presented for analyzing the thermal behavior. The results show that a uniform coverage is obtained by the backward injection which leads to best cooling. The maximum improvement of film cooling is obtained by backward injection with combined hole at M=1.5.

References

F. Ebacher, “Analyse du refroidissement par film de la paroi de bout de pales d’une turbine en céramique à configuration renversée,” M.Sc. Theses, 2017.

R. J. Goldstein, “Film Cooling,” Adv. Heat Transf., vol. 7, no. C, pp. 321–379, 1971, doi: 10.1016/S0065-2717(08)70020-0.

R. J. Goldstein, E. R. G. Eckert, and F. Burggraf, “Effects of hole geometry and density on three-dimensional film cooling,” Int. J. Heat Mass Transf., vol. 17, no. 5, pp. 595–607, 1974, doi: 10.1016/0017-9310(74)90007-6.

M. Gritsch, A. Schulz, and S. Wittig, “Adiabatic wall effectiveness measurements of film-cooling holes with expanded exits,” Proc. ASME Turbo Expo, vol. 3, no. July 1998, pp. 549–556, 1997, doi: 10.1115/97-GT-164.

C. Saumweber, A. Schulz, and S. Wittig, “Free-stream turbulence effects on film cooling with shaped holes,” J. Turbomach., vol. 125, no. 1, pp. 65–73, 2003, doi: 10.1115/1.1515336.

I. C. Lee, Y. C. Chang, P. P. Ding, and P. H. Chen, “Film cooling over a concave surface through two Staggered rows of compound angle holes,” J. Chinese Inst. Eng. Trans. Chinese Inst. Eng. A/Chung-kuo K. Ch’eng Hsuch K’an, vol. 28, no. 5, pp. 827–836, 2005, doi: 10.1080/02533839.2005.9671053.

M. Miao and C. Y. Wu, “Numerical approach to hole shape effect on film cooling effectiveness over flat plate including internal impingement cooling chamber,” Int. J. Heat Mass Transf., vol. 49, no. 5–6, pp. 919–938, 2006, doi: 10.1016/j.ijheatmasstransfer.2005.09.015.

A. Azzi and B. A. Jubran, “Numerical modelling of film cooling from converging slot-hole,” Heat Mass Transf. und Stoffuebertragung, vol. 43, no. 4, pp. 381–388, 2007, doi: 10.1007/s00231-006-0115-9.

A. Khorsi and A. Azzi, “Computation film cooling from three different holes geometries,” Mechanika, vol. 86, no. 6, pp. 32–37, 2010, doi: 10.5755/j01.mech.86.6.15971.

G. Li, H. Zhu, and H. Fan, “Influences of hole shape on film cooling characteristics with CO2 injection,” Chinese J. Aeronaut., vol. 21, no. 5, pp. 393–401, 2008, doi: 10.1016/S1000-9361(08)60051-5.

C. liang Liu, H. ren Zhu, J. tao Bai, and D. chun Xu, “Film cooling performance of converging-slot holes with different exit-entry area ratios,” J. Turbomach., vol. 133, no. 1, pp. 1–11, 2011, doi: 10.1115/1.4000543.

C. Liu, H. Zhu, J. Bai, and D. Xu, “Film Cooling Performance of Waist-Shaped Slot Holes.” pp. 1359–1370, Jun. 14, 2010, doi: 10.1115/GT2010-22237.

C. Q. Nguyen, P. L. Johnson, B. C. Bernier, S. H. Ho, and J. S. Kapat, “Comparison of film effectiveness and cooling uniformity of conical and cylindrical-shaped film hole with coolant-exit temperature correction.” pp. 1897–1907, Jun. 14, 2010, doi: 10.1115/GT2010-23732.

C. Han, Z. Chi, J. Ren, and H. Jiang, “Optimal arrangement of combined-hole for improving film cooling effectiveness.” Turbo Expo.: Power for Land, Sea and Air, 2013, doi: 10.1115/GT2013-94561.

H. Hassan and K. Abdullah, “Combined-hole film cooling with the application of double flow control devices,” MATEC Web Conf., vol. 135, pp. 1–9, 2017, doi: 10.1051/matecconf/201713500003.

J. Wang, K. Tian, J. Luo, and B. Sundén, “Effect of hole configurations on film cooling performance,” Numer. Heat Transf. Part A Appl., vol. 75, no. 11, pp. 725–738, 2019, doi: 10.1080/10407782.2019.1608762.

S. Na and T. I.-P. Shih, “Increasing adiabatic film-cooling effectiveness by using an upstream ramp.” Turbo Expo.: Power for Land, Sea and Air, pp. 931–938, May 08, 2006, doi: 10.1115/GT2006-91163.

K. B. M. Q. Zaman, D. L. Rigby, and J. D. Heidmann, “Experimental study of an inclined jet-in-cross-flow interacting with a vortex generator,” 48th AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo., no. January, pp. 1–18, 2010, doi: 10.2514/6.2010-88.

A. F. Shinn and S. Pratap Vanka, “Large eddy simulations of film-cooling flows with a micro-ramp vortex generator,” J. Turbomach., vol. 135, no. 1, Oct. 2012, doi: 10.1115/1.4006329.

B. An, J. Liu, C. Zhang, and S. Zhou, “Film cooling of cylindrical hole with a downstream short crescent-shaped block,” J. Heat Transfer, vol. 135, no. 3, Feb. 2013, doi: 10.1115/1.4007879.

C. Zhang and Z. Wang, “Effect of the downstream crescent-shaped block height on the flat-plate film flow and cooling performance,” J. Appl. Mech. Tech. Phys., vol. 59, no. 5, pp. 951–961, 2018, doi: 10.1134/S0021894418050255.

W. Zhou and H. Hu, “Improvements of film cooling effectiveness by using Barchan dune shaped ramps,” Int. J. Heat Mass Transf., vol. 103, no. I, pp. 443–456, 2016, doi: 10.1016/j.ijheatmasstransfer.2016.07.066.

W. Zhou and H. Hu, “A novel sand-dune-inspired design for improved film cooling performance,” Int. J. Heat Mass Transf., vol. 110, pp. 908–920, 2017, doi: 10.1016/j.ijheatmasstransfer.2017.03.091.

X. Li, “Numerical simulation on fluid flow and heat transfer of film cooling with backward injection.” 14th Int. Heat Transf. Conf., pp. 257–265, Aug. 08, 2010, doi: 10.1115/IHTC14-22995.

G. Subbuswamy, X. Li, and K. Gharat, “Numerical simulation of backward film cooling with fan-shaped holes.” Heat Trans. Summer Conf., Jul. 14, 2013, doi: 10.1115/HT2013-17801.

S. Park, E. Y. Jung, S. H. Kim, H.-S. Sohn, and H. H. Cho, “Enhancement of Film Cooling Effectiveness Using Backward Injection Holes.” Jun. 15, 2015, doi: 10.1115/GT2015-43853.

K. Singh, B. Premachandran, and M. R. Ravi, “Experimental and numerical studies on film cooling with reverse/backward coolant injection,” Int. J. Therm. Sci., vol. 111, pp. 390–408, 2017, doi: 10.1016/j.ijthermalsci.2016.09.027.

Z. C. Zhao, L. M. He, S. J. Dai, and S. Shao, “Computational research on film cooling performance of different shaped holes with backward and forward injection,” AIP Adv., vol. 9, no. 5, 2019, doi: 10.1063/1.5091573.

A. K. Sinha, D. G. Bogard, and M. E. Crawford, “Film-cooling effectiveness downstream of a single row of holes with variable density ratio,” J. Turbomach., vol. 113, no. 3, pp. 442–449, 1991, doi: 10.1115/1.2927894.

V. Yakhot and L. M. Smith, “The renormalization group, the ɛ-expansion and derivation of turbulence models,” J. Sci. Comput., vol. 7, no. 1, pp. 35–61, 1992, doi: 10.1007/BF01060210.

Downloads

Published

2021-09-19 — Updated on 2021-09-19

Versions

How to Cite

[1]
F. Ben Ali Kouchih, K. Boualem, and A. Azzi, “Effect of backward injection with combined hole on film colling performance”, J. Mech. Eng. Sci., vol. 15, no. 3, pp. 8418–8427, Sep. 2021.