Effects of reverse cold rolling on the microstructure, texture and mechanical properties of AA1100 aluminium alloys

Authors

  • O. Rivero Universidad de Córdoba. Departamento de ingeniería mecánica. Grupo ICT. Carrera 6 No. 77- 305 ZIP:230002, Montería - Córdoba, Colombia. Phone: +57(4)7860920
  • D. R. Pico Universidad de Córdoba. Departamento de ingeniería mecánica. Grupo ICT. Carrera 6 No. 77- 305 ZIP:230002, Montería - Córdoba, Colombia. Phone: +57(4)7860920
  • L. G. Castruita Universidad Autónoma de Coahuila; Facultad de Ingeniería Mecánica y Eléctrica, Av. Barranquilla S/N, Col. Guadalupe, Monclova 25750, México
  • F. García-Pastor CINVESTAV-IPN, Unidad Saltillo, Industria Metalúrgica 1062, Parque Industria Saltillo, Ramos Arizpe, Ramos Arizpe 25900, México
  • J. Unfried-Silgado Universidad de Córdoba. Departamento de ingeniería mecánica. Grupo ICT. Carrera 6 No. 77- 305 ZIP:230002, Montería - Córdoba, Colombia. Phone: +57(4)7860920

DOI:

https://doi.org/10.15282/jmes.15.2.2021.04.0629

Keywords:

Reverse cold rolling, aluminium alloys, texture, annealing, mechanical properties

Abstract

In this work the microstructure, texture and mechanical properties during different stages of reverse cold rolling (RCR) process on aluminium alloy AA1100-H14 were analysed.  Microstructure was observed using optical and electron scanning microscopy. Texture was analysed using X-ray diffraction (macrotexture) and electron back-scattering diffraction (microtexture) techniques. Tensile test and microhardness measurements were carried out. Results showed that a high deformation using RCR was obtained in samples of annealed state leading to maximum values of tensile strength and hardness, along with a reduction of ductility. Intensity of -fibres decreased producing unstable textures {112} <110> while microstructure exhibited refinement of grain, with enlarged morphology.

References

B. B. Lindahl and M. Selleby, “The Al-Fe-Mn system revisited-An updated thermodynamic description using the most recent binaries,” Calphad Comput. Coupling Phase Diagrams Thermochem., 2013, doi: 10.1016/j.calphad.2013.05.001.

A. S. Khan and H. Liu, “Variable strain rate sensitivity in an aluminum alloy: Response and constitutive modeling,” Int. J. Plast., 2012, doi: 10.1016/j.ijplas.2012.02.001.

S. Naghdy, L. Kestens, S. Hertelé, and P. Verleysen, “Evolution of microstructure and texture in commercial pure aluminum subjected to high pressure torsion processing,” Mater. Charact., 2016, doi: 10.1016/j.matchar.2016.09.012.

S. Mohanty, S. P. Regalla, and Y. V. D. Rao, “Influence of process parameters on surface roughness and forming time of Al-1100 sheet in incremental sheet metal forming,” J. Mech. Eng. Sci., 2019, doi: 10.15282/jmes.13.2.2019.11.0408.

L. H. An, Y. Cai, W. Liu, S. J. Yuan, S. Q. Zhu, and F. C. Meng, “Effect of pre-deformation on microstructure and mechanical properties of 2219 aluminum alloy sheet by thermomechanical treatment,” Trans. Nonferrous Met. Soc. China (English Ed., 2012, doi: 10.1016/S1003-6326(12)61733-6.

K. A. Zakaria, F. H. A. Suhadak, M. B. Ali, S. Abdullah, and M. J. Ghazali, “Influence of mechanical properties on load sequence effect and fatigue life of aluminium alloy,” J. Mech. Eng. Sci., 2017, doi: 10.15282/jmes.11.1.2017.6.0227.

L. Zhang et al., “Texture, microstructure and mechanical properties of 6111 aluminum alloy subject to rolling deformation,” Mater. Res., 2017, doi: 10.1590/1980-5373-MR-2017-0549.

S. Li, Q. Zhao, Z. Liu, and F. Li, “A review of texture evolution mechanisms during deformation by rolling in aluminum alloys,” J. Mater. Eng. Perform., 2018, doi: 10.1007/s11665-018-3439-y.

L. Y. Kou, W. Y. Zhao, X. Y. Tuo, G. Wang, and C. R. Sun, “Effect of stress triaxiality on fracture failure of 6061 aluminium alloy,” J. Mech. Eng. Sci., vol. 14, no. 2, pp. 6961–6970, 2020, doi: 10.15282/JMES.14.2.2020.33.0545.

A. J. Schwartz, M. Kumar, B. L. Adams, and D. P. Field, Electron backscatter diffraction in materials science. 2009.

S. Suwas and N. P. Gurao, “Crystallographic texture in materials,” J. Indian Inst. Sci., 2008.

L. A. I. Kestens and H. Pirgazi, “Texture formation in metal alloys with cubic crystal structures,” Materials Science and Technology (United Kingdom). 2016, doi: 10.1080/02670836.2016.1231746.

X. Wang et al., “The dependence of microstructure, texture evolution and mechanical properties of Al-Mg-Si-Cu alloy sheet on final cold rolling deformation,” J. Alloys Compd., 2016, doi: 10.1016/j.jallcom.2015.10.070.

J. Sidor, R. H. Petrov, and L. Kestens, “Texture control in aluminum sheets by conventional and asymmetric rolling,” in Comprehensive Materials Processing, 2014.

O. V. Mishin, B. Bay, and D. Juul Jensen, “Through-thickness texture gradients in cold-rolled aluminum,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2000, doi: 10.1007/s11661-000-0175-2.

S. Y. Paredes-Dugarte and B. Hidalgo-Prada, “Micromecanismo de deformación durante la laminación en frio de la aleación comercial de aluminio 3003,” Supl. la Rev. Latinoam. Metal. y Mater. S, vol. 1, pp. 775–781, 2009.

W. Wang, A. L. Helbert, T. Baudin, F. Brisset, and R. Penelle, “Reinforcement of the cube texture during recrystallization of a 1050 aluminum alloy partially recrystallized and 10% cold-rolled,” Mater. Charact., 2012, doi: 10.1016/j.matchar.2011.11.008.

S. Li, N. Qin, J. Liu, and X. Zhang, “Microstructure, texture and mechanical properties of AA1060 aluminum plate processed by snake rolling,” Mater. Des., 2016, doi: 10.1016/j.matdes.2015.11.054.

M. Naseri, M. Reihanian, and E. Borhani, “Effect of strain path on microstructure, deformation texture and mechanical properties of nano/ultrafine grained AA1050 processed by accumulative roll bonding (ARB),” Mater. Sci. Eng. A, 2016, doi: 10.1016/j.msea.2016.07.031.

N. P. Gurao and S. Suwas, “Generalized scaling of misorientation angle distributions at meso-scale in deformed materials,” Sci. Rep., 2014, doi: 10.1038/srep05641.

F. Goli and R. Jamaati, “Effect of strain path during cold rolling on the microstructure, texture, and mechanical properties of AA2024 aluminum alloy,” Mater. Res. Express, 2019, doi: 10.1088/2053-1591/ab0a1f.

P. P. Bhattacharjee, S. Saha, and J. R. Gatti, “Effect of change in strain path during cold rolling on the evolution of microstructure and texture in Al and Al-2.5%Mg,” J. Mater. Eng. Perform., 2014, doi: 10.1007/s11665-013-0793-7.

G. E. Dieter, Mechanical metallurgy. 2011.

B. Koohbor, “On the influence of rolling path change on static recrystallization behavior of commercial purity aluminum,” Int. J. Mater. Form., 2014, doi: 10.1007/s12289-012-1113-8.

H. Yuan, J. Li, D. Cai, Q. Yang, and W. Liu, “Quantitative analysis of texture evolution of direct chill cast and continuous cast AA 1100 aluminum alloys during cold rolling,” 2007, doi: 10.2320/matertrans.MRA2007023.

F. J. P. Simões, R. J. A. de Sousa, J. J. A. Grácio, F. Barlat, and J. W. Yoon, “Effect of asymmetrical rolling and annealing on the mechanical response of an AA1050-O sheet,” Int. J. Mater. Form., 2009, doi: 10.1007/s12289-009-0625-3.

C. Mondal, A. C. Umamaheshwer Rao, G. R. N. Tagore, and A. K. Singh, “Effect of roll diameter and modes of rolling on evolution of texture in high purity aluminum,” 2012, doi: 10.4028/www.scientific.net/MSF.702-703.987.

L. Zhen, J. Chen, S. Yang, W. Shao, and S. Dai, “Development of microstructures and texture during cold rolling in AA 7055 aluminum alloy,” Mater. Sci. Eng. A, 2009, doi: 10.1016/j.msea.2008.10.055.

D. Peláez, C. Isaza, J. M. Meza, P. Fernández-Morales, W. Z. Misiolek, and E. Mendoza, “Mechanical and microstructural evolution of Mg AZ31 alloy using ECASD process,” J. Mater. Res. Technol., 2015, doi: 10.1016/j.jmrt.2015.04.003.

J. K. Lee and D. N. Lee, “Shear texture development and grain refinement in asymmetrically rolled aluminum alloy sheets by varied reduction per pass,” 2002, doi: 10.4028/www.scientific.net/msf.408-412.1419.

J. K. Lee and D. N. Lee, “Texture evolution and grain refinement in AA1050 aluminum alloy sheets asymmetrically rolled with varied shear directions,” Key Eng. Mater., 2007, doi: 10.4028/www.scientific.net/kem.340-341.619.

Downloads

Published

2021-06-10 — Updated on 2021-06-11

Versions

How to Cite

[1]
O. Rivero, D. Pico, L. G. Castruita, F. García-Pastor, and J. Unfried, “Effects of reverse cold rolling on the microstructure, texture and mechanical properties of AA1100 aluminium alloys”, J. Mech. Eng. Sci., vol. 15, no. 2, pp. 7983–7992, Jun. 2021.

Issue

Section

Article