Memristive Behavior of NAOH-Immersed Titania Nanostructures

Authors

  • N. S. Kamarozaman NANO-Electronic CenTre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Z. Aznilinda NANO-Electronic CenTre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • R.A. Bakar NANO-Electronic CenTre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • S.H. Herman NANO-Electronic CenTre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • M. Rusop NANO-Electronic CenTre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

DOI:

https://doi.org/10.15282/jmes.5.2013.15.0066

Keywords:

Titania nanostructure; immersion; memristive behavior.

Abstract

Memristive behavior is defined as a resistive switching loop which can be observed from the current-voltage (I-V) characteristic of a material. This paper reports the application of TiO2 (titania) nanostructures as an active layer for a memristive device instead of using titania thin film in nanoscale thickness as reported by other researchers. 60 nm thickness of titania thin film was deposited on ITO-coated glass substrate using the RF-magnetron sputtering method. Then, for the titania nanostructure’s growth, the TiO2/ITO/glass sample was immersed in 10 mol/l aqueous NaOH solution at 80°C while varying the immersion time for 30, 45 and 60 min. It was found that the sample immersed for 30 min showed better memristive behavior since larger switching loops were observed when positive bias was applied to the sample. The active layer consists of oxygen-deficient titania where oxygen vacancies might present on the surface of the thin film as the result of NaOH-immersion beside the formation of titania nanostructures. The degradation of the switching loops of the samples immersed in NaOH solution for 45 and 60 min might be due to the higher porosity of the samples resulting from the longer immersion process.

References

Aznilinda, Z., Herman, S. H., Bakar, R. A., & Rusop, M. (2013). Effect of electrode types on the resistive switching behavior of titania thin films. Applied Mechanics and Materials, 393, 74-78.

Chua, L. (1971). Memristor - the missing circuit element. Paper presented at the IEEE Transactions on Circuit Theory.

Duraisamy, N., Muhammad, N. M., Kim, H. C., Jo, J. D., & Choi, K. H. (2012). Fabrication of tio2 thin film memristor device using electrohydrodynamic inkjet printing. Thin Solid Films, 520, 5070-5074.

Gale, E., Mayne, R., Adamatzky, A., & Lacy Costello, B. (2014). Drop-coated titanium dioxide memristors. Materials Chemistry and Physics, 143, 524-529.

Gergel-Hackett, N., Hamadani, B., Dunlap, B., Suehle, J., Richter, C., Hacker, C., & Gundlach, D. (2009). A flexible solution-processed memristor. IEEE Electron Device Letters, 30, 706-708.

Haridas, M., Patil, S., & Manjunath, T. C. (2010). Recent atc’s in the design of memristors. International Journal of Computer Electrical Engineering, 2, 1793-8163.

Hayes, B. (2011). The memristor. American Scientist, 99, 106-110.

Haykel Ben Jamaa, M. e. a. (2009). Fabrication of memristors with poly-crystalline silicon nanowires. Paper presented at the 9th IEEE Conference on Nanotechnology.

Johnson, S. L., Sundararajan, A., Hunley, D. P., & Strachan, D. R. (2010). Memristive switching of single-component metallic nanowires. Nanotechnology, 21, 125-204.

Kamarozaman, N. S., Asiah, M. N., Aznilinda, Z., Bakar, R. A., Abdullah, W. F. H., Herman, S. H., & Rusop, M. (2013). Memristive behavior of tio2 nanostructures grown at different substrate positioning by immersion method. Advanced Materials Research, 795, 256-259.

Kumar, A., Madaria, A. R., & Zhou, C. (2010). Growth of aligned single-crystalline rutile tio2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells. Journal of Physical Chemistry C, 14, 7787-7792.

Li, Y. T., Long, S. B., Lu, H. B., Liu, Q., Wang, Q., Wang, Y.et al.Liu, M. (2010). A low-cost memristor based on titanium oxide. Paper presented at the 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT).

Miller, K., Nalwa, K. S., Bergerud, A., Neihart, N. M., & Chaudhary, S. (2010). Memristive behavior in thin anodic titania. Paper presented at the IEEE Electron Device Letters.

Muhammad, N. M., Duraisamy, N., Rahman, K., Dang, H. W., Jo, J., & Choi, K. H. (2013). Fabrication of printed memory device having zinc-oxide active nano-layer and investigation of resistive switching. Current Applied Physics, 13, 90-96.

Prodromakis, T., Michelakis, K., & Toumazou, C. (2010a). Switching mechanisms in microscale memristors. IEEE Electron Device Letters, 46, 63-65.

Prodromakis, T., Michelakis, K., & Toumazou, C. (2010b). Practical micro/nano fabrication implementations of memristive device. Paper presented at the 12th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA).

Prodromakis, T., Michelakis, K., & Toumazou, C. (2010c). Fabrication and electrical characteristics of memristors with tio2/tio2+x active layers. Paper presented at the Proc. of 2010 IEEE International Symposium on Circuits and Systems (ISCAS).

Shao, F., Sun, J., Gao, L., Yang, S. W., & Luo, J. Q. (2011). Template-free synthesis of hierarchical tio2 structures and their application in dye-sensitized solar cells. ACS Applied Materials & Interfaces, 3, 2148-2153.

Tedesco, J. L., Stephey, L., Hernandez-Mora, M., Richter, C. A., & Gergel-Hackett, N. (2012). Switching mechanisms in flexible solution-processed tio2 memristors. Nanotechnology, 23.

Williams, R. (2008). How we found the missing memristor. IEEE Spectrum, 45, 28-35.

Xie, J., Wang, X., & Zhou, Y. (2012). Understanding formation mechanism of titanate nanowires through hydrothermal treatment of various ti-containing precursors in basic solutions. Journal of Materials Science & Technology, 28(6), 488-494.

Xu, S., & Wang, Z. L. (2011). One-dimensional zno nanostructures: Solution growth and functional properties. Nano Research, 4, 1013-1098.

Yanagida, T. (2011). Memristive switching phenomena in a single oxide nanowire. Paper presented at the IEEE Nanotechnology Materials and Devices Conference.

Yoo, J. E., Lee, K. Y., Tighineanu, A., & Schmuki, P. (2013). Highly ordered tio2 nanotube-stumps with memristive response. Electrochemistry Communications, 34, 177-180.

Zhu, H. Y., Lan, Y., Gao, X. P., Ringer, S. P., Zheng, Z. F., Song, D. Y., & Zhao, J. C. (2005). Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. Journal of the American Chemical Society, 127, 6730-6736.

Downloads

Published

2013-12-31

How to Cite

[1]
N. S. Kamarozaman, Z. Aznilinda, R.A. Bakar, S.H. Herman, and M. Rusop, “Memristive Behavior of NAOH-Immersed Titania Nanostructures”, J. Mech. Eng. Sci., vol. 5, no. 1, pp. 688–695, Dec. 2013.

Issue

Section

Article