Carbon and natural fiber reinforced polymer hybrid composite: Processes, applications, and challenges
DOI:
https://doi.org/10.15282/jmes.10.15282.16.2.2022.06.0702Keywords:
Hybrid Composite, Carbon Fiber, Natural Fiber, Mechanical Properties, PolymerAbstract
Composites have recently emerged as the ideal material for weight reduction in a wide range of technical applications. Hybrid composites offer special properties that enable them to meet a wide range of design objectives more efficiently and affordably than conventional composites. Natural fiber-based hybrid composites are also less damaging to the environment and have a reduced carbon footprint. The hybridization of natural fibres with synthetic fibres can substantially minimise the problems associated with natural fibre composites, since the advantages of one kind of fibre can outweigh the disadvantages of another. Several research have been carried out to investigate the different characteristics of carbon-natural fibre reinforced hybrid composites and to evaluate their suitability for a variety of technological applications. The objective of this work is to provide an overview of the materials and manufacturing processes currently utilised to fabricate carbon-natural fibre reinforced hybrid composites. This paper also attempts to discuss the reported mechanical, damping, and other characteristics of the resultant hybrid composites. This article provides a factual overview of the development accomplished so far in the field of hybrid composites constructed from carbon-natural fibres.
References
T. W. Clyne and D. Hull, An introduction to composite materials. Cambridge University Press, 2019.
K. K. Chawla, Composite materials: science and engineering. Springer Science & Business Media, 2012.
M. A. Masuelli, ‘Introduction of fibre-reinforced polymers- Polymers and composites: Concepts, properties and processes,’ in Fiber Reinf. Polym.-The Technol. Appl. for Concrete Repair, IntechOpen, 2013, doi: 10.5772/54629.
M. O. Seydibeyoglu, A. K. Mohanty, and M. Misra, Fiber technology for fiber-reinforced composite, Woodhead Publishing, 2017.
K. Begum and M. Islam, ‘Natural fiber as a substitute to synthetic fiber in polymer composites: a review,’ Res. J. Eng. Sci, vol. 2278, pp. 46-53, 2013.
D. N. Saheb and J. P. Jog, Natural fiber polymer composite: A review, Advan. in Polym. Technol., vol. 18, no. 4, pp. 351-363, 1999, doi: 10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X.
Z. N. Azwa, B. F. Yousif, A. C. Manalo, and W. Karunasena, ‘A review on the degradability of polymeric composites based on natural fibres,’ Mater. Des., vol. 47, pp. 424–442, 2013, doi: 10.1016/j.matdes.2012.11.025.
X. Li, L. G. Tabil, and S. Panigrahi, ‘Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review,’ J. of Polym. and the Env., vol. 15, no. 1, pp. 25–33, 2007, doi: 10.1007/s10924-006-0042-3.
S.-Y. Fu, G. Xu, and Y.-W. Mai, ‘On the elastic modulus of hybrid particle/short-fiber/polymer composites,’ Compos. Part B: Eng., vol. 33, no. 4, pp. 291–299, 2002, doi: 10.1016/S1359-8368(02)00013-6.
S. M. M. Amir et al., ‘Nondestructive testing method for Kevlar and natural fiber and their hybrid composites,’ in Durab. and Life Predi. in Biocompos., Fibre-Reinf. Compos. and Hybrid Compos., Elsevier, pp. 367–388, 2019, doi: 10.1016/B978-0-08-102290-0.00016-7.
S. Nunna, P. R. Chandra, S. Shrivastava, and A. K. Jalan, ‘A review on mechanical behavior of natural fiber based hybrid composites,’ J. Reinf. Plasti. and Compos., vol. 31, no. 11, pp. 759–769, 2012, doi: 10.1177/0731684412444325.
H. Abdellaoui, M. Raji, H. Essabir, R. Bouhfid, and A. el kacem Qaiss, ‘Mechanical behavior of carbon/natural fiber-based hybrid composites,’ in Mech. and Phy. Testing of Biocompos., Fibre-Reinf. Compos. and Hybrid Compos., Elsevier, pp. 103–122, 2019, doi: 10.1016/B978-0-08-102292-4.00006-0.
U. Kureemun, M. Ravandi, L. Q. N. Tran, W. S. Teo, T. E. Tay, and H. P. Lee, ‘Effects of hybridization and hybrid fibre dispersion on the mechanical properties of woven flax-carbon epoxy at low carbon fibre volume fractions,’ Compos. Part B: Eng., vol. 134, pp. 28–38, 2018, doi: 10.1016/j.compositesb.2017.09.035.
M. V. Ramana and S. Ramprasad, ‘Experimental investigation on jute/carbon fibre reinforced epoxy based hybrid composites,’ Mater. Today: Proceedi., vol. 4, no. 8, pp. 8654–8664, 2017, doi: 10.1016/j.matpr.2017.07.214.
J. M. Wang, L. Zhao, and X. Qin, ‘Study on the mechanical properties of Jute/Carbon Hybrid composites,’ in Adv. Mater. Research, vol. 331, pp. 110–114, 2011, doi: 10.4028/www.scientific.net/AMR.331.110.
D. Kada, S. Migneault, G. Tabak, and A. Koubaa, ‘Physical and mechanical properties of polypropylene-wood-carbon fiber hybrid composites,’ BioResources, vol. 11, no. 1, pp. 1393–1406, 2016.
M. Aslan, M. Tufan, and T. Küçükömeroğlu, ‘Tribological and mechanical performance of sisal-filled waste carbon and glass fibre hybrid composites,’ Compos. Part B: Eng., vol. 140, pp. 241–249, 2018, doi: 10.1016/j.compositesb.2017.12.039.
V. A. Patel, B. D. Bhuva, and P. H. Parsania, ‘Performance evaluation of treated—Untreated Jute—Carbon and Glass—Carbon Hybrid Composites of Bisphenol-C based Mixed Epoxy—Phenolic Resins,’ J. of reinf. plasti. and compos., vol. 28, no. 20, pp. 2549–2556, 2009, doi: 10.1177/0731684408093973.
R. B. J. Chandra, B. Shivamurthy, S. D. Kulkarni, and M. S. Kumar, ‘Hybrid polymer composites for EMI shielding application- a review,’ Mater. Res. Express, vol. 6, no. 8, pp. 1-60, 2019, doi: 10.1088/2053-1591/aaff00.
D. M. Haneef, D. J. F. Rahman, D. M. Yunus, and M. S. Zameer, ‘Hybrid Polymer Matrix Composites for biomedical applications,’ Int. J. Modern. Eng. Res., vol. 3, no. 2, pp.970-979, 2013.
M. Y. Khalid, M. A. Nasir, A. Ali, A. Al Rashid, and M. R. Khan, ‘Experimental and numerical characterization of tensile property of jute/carbon fabric reinforced epoxy hybrid composites,’ SN Appl. Sci., vol. 2, no. 4, pp. 1–10, 2020, doi: 10.1007/s42452-020-2403-2.
J. Saiteja, V. Jayakumar, and G. Bharathiraja, ‘Evaluation of mechanical properties of jute fiber/carbon nano tube filler reinforced hybrid polymer composite,’ Mater. Today: Proceedi, vol. 22, pp. 756–758, 2020, doi: 10.1016/j.matpr.2019.10.110.
M. Ben Ameur, A. El Mahi, J.-L. Rebiere, M. Abdennadher, and M. Haddar, ‘Damping analysis of unidirectional carbon/flax fiber hybrid composites,’ Int. J. of Appl. Mecha., vol. 10, no. 05, 1850050, 2018, doi: 10.1142/S1758825118500503.
M. Tufan, S. Akbas, and M. Aslan, ‘Decay resistance, thermal degradation, tensile and flexural properties of sisal carbon hybrid composites,’ Maderas. Ciencia y tecnología, vol. 18, no. 4, pp. 599–606, 2016, doi: 10.4067/S0718-221X2016005000052.
N. Shah, J. Fehrenbach, and C. A. Ulven, ‘Hybridization of Hemp Fiber and Recycled-Carbon Fiber in Polypropylene Composites,’ Sustainability, vol. 11, no. 11, pp. 1–12, 2019, doi: 10.3390/su11113163.
M. L. Longana, V. Ondra, H. Yu, K. D. Potter, and I. Hamerton, ‘Reclaimed carbon and flax fibre composites: manufacturing and mechanical properties,’ Recycling, vol. 3, no. 4, pp. 1–13, 2018, doi: 10.3390/recycling3040052.
Y. Gu, X. Tan, Z. Yang, and Z. Zhang, ‘Hot compaction and mechanical properties of ramie fabric/epoxy composite fabricated using vacuum assisted resin infusion molding,’ Mater. Des. (1980-2015), vol. 56, pp. 852–861, 2014, doi: 10.1016/j.matdes.2013.11.077.
A. Gopanna, K. P. Rajan, S. P. Thomas, and M. Chavali, ‘Polyethylene and polypropylene matrix composites for biomedical applications,’ in Mat. for Biomedi. Eng., Elsevier, 2019, pp. 175–216, doi: 10.1016/B978-0-12-816874-5.00006-2.
K. Balasubramanian, M. T. Sultan, and N. Rajeswari, ‘Manufacturing techniques of composites for aerospace applications,’ in Sustai. Compos. for Aeros. Appl., Elsevier, 2018, pp. 55–67, doi: 10.1016/B978-0-08-102131-6.00004-9.
B. Yalcin, ‘Hollow glass microspheres in sheet molding compounds,’ in Hollow Glass Microspheres for Plasti., Elastom., and Adhesi. Compounds, Elsevier, 2015, pp. 123–145, doi: 10.1016/B978-1-4557-7443-2.00005-0.
M. Revellino, L. Saggese, and E. Gaiero, ‘Compression molding of SMCs,̕ in Compr. compos. mater., 2nd ed., Netherland: Elsevier Science, 2000, ch.2, pp. 763-805.
D. Cairns, J. Skramstad, and J. Mandell, ‘Evaluation of hand lay-up and resin transfer molding in composite wind turbine blade structures,’ in 20th 2001 ASME Wind Energy Symposi., American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2001-24.
M. R. Jamir, M. S. Majid, and A. Khasri, ‘Natural lightweight hybrid composites for aircraft structural applications,’ in Sustain. Compos. for Aeros. Appl., Elsevier, 2018, pp. 155–170, doi: 10.1016/B978-0-08-102131-6.00008-6.
M. Asim, M. Jawaid, N. Saba, M. Nasir, and M. T. H. Sultan, ‘Processing of hybrid polymer composites—A review,’ in Hybrid Polymer Compos. Mat., Elsevier, 2017, pp. 1–22, doi: 10.1016/B978-0-08-100789-1.00001-0.
K.-T. Hsiao and D. Heider, ‘Vacuum assisted resin transfer molding (VARTM) in polymer matrix composites,’ in Manuf. techniques for polym. matrix compos. (PMCs), Elsevier, 2012, pp. 310–347, doi: 10.1533/9780857096258.3.310.
N. Hashim, D. L. Majid, D. M. Baitab, N. Yidris, and R. Zahari, 'Tensile properties of woven intra-ply Carbon/Kevlar Reinforced Epoxy Hybrid composite at sub-ambient temperature,’ in Mater. Sci. and Mater. Eng., vol. 1, pp. 766-773, 2019, doi: 10.1016/b978-0-12-803581-8.11567-x.
H. Teodorescu-Draghicescu, S. Vlase, M. D. Stanciu, I. Curtu, and M. Mihalcica, ‘Advanced pultruded glass fibers-reinforced isophtalic polyester resin,’ Mater. Plastice, vol. 52, no. 1, pp. 62–64, 2015.
J. Wulfsberg, A. Herrmann, G. Ziegmann, G. Lonsdorfer, N. Stöß, and M. Fette, ‘Combination of carbon fibre sheet moulding compound and prepreg compression moulding in aerospace industry’, Procedia Engineering, vol. 81, pp. 1601–1607, 2014, doi: 10.1016/j.proeng.2014.10.197.
L. Orgéas and P. J. Dumont, ‘Sheet molding compounds’, Wiley encyclop. of compos., pp. 1–36, 2011.
E. Nisini, C. Santulli, and A. Liverani, ‘Mechanical and impact characterization of hybrid composite laminates with carbon, basalt and flax fibres,’ Compos. Part B: Eng., vol. 127, pp. 92–99, Oct. 2017, doi: 10.1016/j.compositesb.2016.06.071.
S. D. Salman, ‘Effects of jute fibre content on the mechanical and dynamic mechanical properties of the composites in structural applications’, Def. Technol., vol. 16, no. 6, 2019, doi: 10.1016/j.dt.2019.11.013.
S. Ashworth, J. Rongong, P. Wilson, and J. Meredith, ‘Mechanical and damping properties of resin transfer moulded jute-carbon hybrid composites,’ Compos. Part B: Eng., vol. 105, pp. 60–66, Nov. 2016, doi: 10.1016/j.compositesb.2016.08.019.
M. A. El-baky, ‘Evaluation of mechanical properties of jute/glass/carbon fibers reinforced hybrid composites,’ Fibers and Polymers, vol. 18, no. 12, pp. 2417–2432, 2017, doi: 10.1007/s12221-017-7682-x.
P. N. Khanam, H. A. Khalil, M. Jawaid, G. R. Reddy, C. S. Narayana, and S. V. Naidu, ‘Sisal/carbon fibre reinforced hybrid composites: tensile, flexural and chemical resistance properties,’ J. of Polym. and the Env., vol. 18, no. 4, pp. 727–733, 2010, doi: 10.1007/s10924-010-0210-3.
N. Sapiai, A. Jumahat, and R. N. Hakim, ‘Tensile and compressive properties of hybrid carbon fiber/kenaf polymer composite’, Adv. in Environ. Biology, vol. 8, no. 8, pp. 2655–2661, 2014.
Ö. Y. Bozkurt and M. E. Gökdemir, ‘Effect of basalt fiber hybridization on the vibration-damping behavior of carbon fiber/epoxy composites,’ Polym. Compos., vol. 39, no. S4, pp. E2274–E2282, 2018, doi:10.1002/pc.24606.
A. Murdani, S. Hadi, and U. S. Amrullah, ‘Flexural properties and vibration behavior of jute/glass/carbon fiber reinforced unsaturated polyester hybrid composites for wind turbine blade,’ in Key Eng. Mater., 2017, vol. 748, pp. 62–68, doi: 10.4028/www.scientific.net/KEM.748.62.
S. R. Borukati, B. D. Prasad, and A. Ramesh, ‘Development and charecterization of natural Fiber/Carbon Fiber Reinforced Hybrid composite material,’ Mater. Today: Proceedi., vol. 18, pp. 5394–5399, 2019, doi: 10.1016/j.matpr.2019.07.567.
J. Bachmann, M. Wiedemann, and P. Wierach, ‘Flexural mechanical properties of hybrid epoxy composites reinforced with nonwoven made of flax fibres and recycled carbon fibres,’ Aerospace, vol. 5, no. 4, pp. 1-16, 2018, doi: 10.3390/aerospace5040107.
H. N. Dhakal, Z. Y. Zhang, R. Guthrie, J. MacMullen, and N. Bennett, ‘Development of flax/carbon fibre hybrid composites for enhanced properties,’ Carbohydrate Polym., vol. 96, no. 1, pp. 1–8, Jul. 2013, doi: 10.1016/j.carbpol.2013.03.074.
Z. Al-Hajaj, B. L. Sy, H. Bougherara, and R. Zdero, ‘Impact properties of a new hybrid composite material made from woven carbon fibres plus flax fibres in an epoxy matrix,’ Compos. Struct., vol. 208, pp. 346–356, 2019, doi: 10.1016/j.compstruct.2018.10.033.
R. V. Prakash and M. Maharana, ‘Damage detection using infrared thermography in a carbon-flax fiber hybrid composite,’ Procedia Struct. Integrity, vol. 7, pp. 283–290, 2017, doi: 10.1016/j.prostr.2017.11.090
T. A. Lenda and S. Mridha, ‘Influence of moisture absorption on impact strength and failure behavior of hybrid jute-carbon/epoxy composite,’ in Adv. Mater. Research, 2011, vol. 264, pp. 457–462, doi: 10.4028/www.scientific.net/AMR.264-265.457.
H. Anuar, S. H. Ahmad, R. Rasid, A. Ahmad, and W. W. Busu, ‘Mechanical properties and dynamic mechanical analysis of thermoplastic-natural-rubber-reinforced short carbon fiber and kenaf fiber hybrid composites,’ J. of Appl. Polym. Sci., vol. 107, no. 6, pp. 4043–4052, 2008, doi: 10.1002/app.27441.
M. J. L. Guen, R. H. Newman, A. Fernyhough, G. W. Emms, and M. P. Staiger, ‘The damping-modulus relationship in flax-carbon fiber hybrid composites,’ Compos. Part B, vol. 89, pp. 27–33, 2016, doi: 10.1016/j.compositesb.2015.10.046.
M. Assarar, W. Zouari, H. Sabhi, R. Ayad, and J.-M. Berthelot, ‘Evaluation of the damping of hybrid carbon–flax reinforced composites,’ Compos. Struct., vol. 132, pp. 148–154, 2015, doi: 10.1016/j.compstruct.2015.05.016.
Y. Li, S. Cai, and X. Huang, ‘Multi-scaled enhancement of damping property for carbon fiber reinforced composites,’ Compos. Sci. and Technol., vol. 143, pp. 89–97, 2017, doi: 10.1016/j.compscitech.2017.03.008.
M. L. Longana, H. Yu, P. Aryal, and K. D. Potter, ‘The high performance discontinuous fibre (HiPerDiF) method for carbon-flax hybrid composites manufacturing,’ in Proceedi. of the 21st Int. Conf. on Compos. Mater., Xi’an, China, 2017, pp. 20–25.
H. Sezgin, O. B. Berkalp, R. Mishra, and J. Militky, ‘Investigation of dynamic mechanical properties of jute/carbon reinforced composites,’ Int. J. of Mater. and Metallur. Eng., vol. 10, no. 12, pp. 1492–1495, 2016, doi:10.5281/zenodo.1128263.
M. Jawaid, H. A. Khalil, A. A. Bakar, and P. N. Khanam, ‘Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites,’ Mater. Des., vol. 32, no. 2, pp. 1014–1019, 2011, doi: 10.1016/j.matdes.2010.07.033.
M. Ashok Kumar, G. Ramachandra Reddy, Y. Siva Bharathi, S. Venkata Naidu, and V. Naga Prasad Naidu, ‘Frictional coefficient, hardness, impact strength, and chemical resistance of reinforced sisal-glass fiber epoxy hybrid composites,’ J. Compos. Mater., vol. 44, no. 26, pp. 3195–3202, 2010, doi: 10.1177/0021998310371551.
G. Venkata Reddy, S. Venkata Naidu, T. Shobha Rani, and M. C. S. Subha, ‘Compressive, chemical resistance, and thermal studies on kapok/sisal fabrics polyester composites,’ J. reinf. plasti. and compos., vol. 28, no. 12, pp. 1485–1494, 2009, doi: 10.1177/0731684408089535.
Z. N. Azwa, B. F. Yousif, A. C. Manalo, and W. Karunasena, ‘A review on the degradability of polymeric composites based on natural fibres,’ Mater. Des., vol. 47, pp. 424–442, 2013, doi: 10.1016/j.matdes.2012.11.025.
E. Pérez-Pacheco, J. I. Cauich-Cupul, A. Valadez-González, and P. J. Herrera-Franco, ‘Effect of moisture absorption on the mechanical behavior of carbon fiber/epoxy matrix composites,’ J. mater. sci., vol. 48, no. 5, pp. 1873–1882, 2013, doi:10.1007/s10853-012-6947-4.
N. Venkateshwaran, A. ElayaPerumal, A. Alavudeen, and M. Thiruchitrambalam, ‘Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites,’ Mater. Des., vol. 32, no. 7, pp. 4017–4021, 2011, doi: 10.1016/j.matdes.2011.03.002.
A. Amiri, V. Burkart, A. Yu, D. Webster, and C. Ulven, ‘The potential of natural composite materials in structural design,’ in Sustain. Compos. for Aeros. Appl., Elsevier, 2018, pp. 269–291, doi: 10.1016/B978-0-08-102131-6.00013-X.
F. Bajuri, N. Mazlan, M. R. Ishak, and M. K. A. Uyup, ‘Effect of impregnation on hybrid mesoporous silica / kenaf reinforced epoxy composites in term of flexural, compressive and water absorption properties,’ J. Mech. Eng. and Sci., vol. 14, no. 4, 2020, doi: 10.15282/jmes.14.4.2020.19.0593.
J. H. S. Almeida, S. D. Souza, E. C. Botelho, and S. C. Amico, ‘Carbon fiber-reinforced epoxy filament-wound composite laminates exposed to hygrothermal conditioning,’ J. mater. sci., vol. 51, no. 9, pp. 4697–4708, 2016, doi: 10.1007/s10853-016-9787-9.
D. Scida, M. Assarar, C. Poilâne, and R. Ayad, ‘Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite,’ Compos. Part B: Eng., vol. 48, pp. 51–58, 2013, doi: 10.1016/j.compositesb.2012.12.010.
B. G. Kumar, R. P. Singh, and T. Nakamura, ‘Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation’, J. Compos. mater., vol. 36, no. 24, pp. 2713–2733, 2002, doi: 10.1177/002199802761675511.
L. Yan, N. Chouw, and K. Jayaraman, ‘Effect of UV and water spraying on the mechanical properties of flax fabric reinforced polymer composites used for civil engineering applications,’ Mater. Des., vol. 71, pp. 17–25, 2015, doi: 10.1016/j.matdes.2015.01.003.
M. N. Gururaja and A. H. Rao, ‘A review on recent applications and future prospectus of hybrid composites,’ Int. J. Soft Comput. Eng., vol. 1, no. 6, pp. 352–355, 2012.
M. Puttegowda, S. M. Rangappa, M. Jawaid, P. Shivanna, Y. Basavegowda, and N. Saba, ‘Potential of natural/synthetic hybrid composites for aerospace applications,’ in Sustain. Compos. for Aeros. Appl., Elsevier, 2018, pp. 315–351, doi: 10.1016/B978-0-08-102131-6.00021-9.
M. R. Mansor, A. H. Nurfaizey, N. Tamaldin, and M. N. A. Nordin, ‘Natural fiber polymer composites: utilization in aerospace engineering,’ in Biomass, Biopolym-Based Mater., and Bioenergy, Elsevier, 2019, pp. 203–224, doi: 10.1016/B978-0-08-102426-3.00011-4.
A. N. Mengal, S. Karuppanan, and A. A. Wahab, ‘Basalt carbon hybrid composite for wind turbine rotor blades: A Short Review,’ in Adv. Mater. Research, vol. 970, pp. 67–73, 2014, doi: 10.4028/www.scientific.net/AMR.970.67 .
I. A. Subagia and Y. Kim, ‘A study on flexural properties of carbon-basalt/epoxy hybrid composites’, J. Mech. Sci. and Technol., vol. 27, no. 4, pp. 987–992, 2013, doi: 10.1007/s12206-013-0209-5.
D. K. Jesthi and R. K. Nayak, ‘Improvement of mechanical properties of hybrid composites through interply rearrangement of glass and carbon woven fabrics for marine application,’ Compos. Part B: Eng., vol. 168, pp. 467–475, Jul. 2019, doi: 10.1016/j.compositesb.2019.03.042.
L. Calabrese, V. Fiore, T. Scalici, and A. Valenza, ‘Experimental assessment of the improved properties during aging of flax/glass hybrid composite laminates for marine applications,’ J. Appl. Polym. Sci., vol. 136, no. 14, pp.1-12, 2019, doi: 10.1002/app.47203.
M. A. Alam, K. Alriyami, Z. C. Muda, and M. Z. Jumaat, ‘Hybrid kenaf fibre composite plates for potential application in shear strengthening of reinforced concrete structure,’ Indian J. Sci. Technol., vol. 9, no. 6, pp. 974–6846, 2016, doi: 10.17485/ijst/2016/v9i6/77483.
H. R. Pakravan, M. Latifi, and M. Jamshidi, ‘Hybrid short fiber reinforcement system in concrete: A review,’ Constr. build. mater., vol. 142, pp. 280–294, 2017, doi: 10.1016/j.conbuildmat.2017.03.059.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Universiti Malaysia Pahang Publishing
This work is licensed under a Creative Commons Attribution 4.0 International License.