Mechanical and Thermal Properties of Composites from Unsaturated Polyester Filled with Oil Palm Ash

Authors

  • M.S. Ibrahim Advanced Material and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • S.M. Sapuan Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia,43400 UPM Serdang, Selangor, Malaysia
  • A.A. Faieza Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia,43400 UPM Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.15282/jmes.2.2012.1.0012%20

Keywords:

Oil palm ash, unsaturated polyester, filled composites, mechanical properties, thermal properties.

Abstract

Oil palm ash (OPA) is available in abundance, is renewable, can be obtained at no cost and shows good performance at high thermal conditions. Combinations of the unsaturated polyester with natural fillers have been reported to improve the mechanical and thermal properties of composites. Utilisation of oil palm ash as a filler in the manufacture of polymer composites can significantly reduce the requirement for other binders or matrixes of composite materials. This research uses oil palm ash as a filler to form composites through the investigation of the effect of different contents of filler on the properties of OPA-filled unsaturated polyester (UP/OPA) composites. The effect of different volume fractions, i .e., 0, 10, 20 and 30 vol.% of oil palm ash introduced into 100, 90, 80 and 70 vol.% of an unsaturated polyester matrix on the composite mechanical properties, i.e., tensile and flexural, has been studied, together with thermal gravimetric analysis (TGA) and differential scanning calorimetric (DSC). Specimens were prepared using compression moulding techniques based on the ASTM D790 and D5083 standards for flexural and tensile tests, respectively. The tensile and flexural
mechanical properties of UP/OPA composites were improved in modulus by increasing the filler content. Thermal stability of the composites increased as the OPA filler content was increased, which was a logical consequence because of the high thermal stability of the silica compound of the OPA filler compared with that of the UP matrix. The results from the surface electron microscope (SEM) analysis were the extension of mechanical and thermal tests

References

Abdul Khalil, H. P. S., Firoozian, P., Bakare, I. O., Hazizan, M. A., & Ahmad Md Noor. (2010). Exploring biomass based carbon black as filler in epoxy composites: flexural and thermal properties. Materials and Design, 31, 3419-3425.

Adams, D. F., & Tsai, S. W. (1969). The influence of random filament packing on transverse stiffness of unidirectional composites. Journal of Composite Materials, 3, 368-381.

Adebisi, A. A., Maleque, M. A., & Rahman, M. M. (2011). Metal matrix composite brake rotor: historical development and product life cycle analysis. International Journal of Automotive and Mechanical Engineering, 4, 471-480.

Amar, P., Abdulla, M., Satapathy, A., Sandhyarani, B., Bhabani, & Satapathy, K. (2010). A study on a possible correlation between thermal conductivity and wear resistance of particulate filled polymer composites. Materials and Design, 31, 837-849.

Arib, M. N., Sapuan, S. M., Ahmad, M. M. H. M., Tahir, P., & Dahlan, K. Z. M. (2006). Mechanical properties of pineapple leaf fibre (PALF) reinforced polypropylene composites. Material and Design, 27, 391-396

Bachtiar, D., Sapuan, S. M., & Hamdan, M. M. (2010). Flexural properties of alkaline treated sugar palm fibre reinforced epoxy composites. International Journal of Automotive and Mechanical Engineering, 1, 79-90.

Bhat, A. H., & Khalil, H. P. S. (2010). Exploring nano filler based on oil palm ash in polypropylene composites. BioResources, 6, 1288-1297.

Bismarck, S., Mishra, M., & Lampke, T. (2005). Plant Fibers as reinforcement for green composites. In A.M. Mohanty, Natural fibres, Biopolymers and Biocomposites (pp. 37-108). Boca Raton: CRC Press.

Boisvert, J. P., Guyard, A., Persello, J., & Bernard, C. (2006). Relationship between the polymer/silica interaction and properties of silica compsite materials. Wiley InterScience, 44, 1134-1146.

Chaudhary, D. J. (2004). Recycling rice hull ash: A filler matrial for polymeric composites? Advances in Polymer Technology, 23,147-155.

Firoozian, P., Hazizan, M. A., & Khalil, H. P. S. A. (2010). Prediction of mechanical properties of mica-filled epoxy composite using various mechanical models. Journal of Reinforced Plastics and Composites, 29, 2368-2378.

Foo, K. Y., & Hameed, B. H. (2009). Review: Value-added utilization of oil palm ash: a superior recycling of the industrial agricultural waste. Journal of Hazardous Materials, 172, 523-531.

Fu, S. Y., Feng, X. Q., Lauke, B., & Mai, Y. W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites: Part B, 39, 933-961.

Guyard, A., Persello, J., Boisvert, J. P., & Bernard, C. (2006). Relationship between polymer/silica interaction properties of silica composite materials. Journal of Polymer Sciences Part B: Polymer Physics, 44, 1134-1146.

Hisham, S., Faieza, A. A., Ismail, N., Sapuan, S. M., & Ibrahim, M. S. (2011). Tensile properties and micromorphologies of sawdust and chipwood filled epoxy composites. Key Engineering Materials, 471-472, 1070-1074

Horrocks, R. (2001). Composites. In A. R. Price, Fire Retardant Material (pp. 182-201). Cambridge, UK: Woodhead Publishing Ltd.

Hsiue, G. H., Liu, Y. L., & Liao, H. H. (2001). Flame retardant epoxy resins: an approach from organic-inorganic hybrid nanocomposites. Journal of Polymer Science Part A: Polymer Chemistry, 92, 986-996.

Hsu, D. T. Kim, H. K. Shi, F. G. Tong, H. Y. Chungpaiboonpatana, S. Davidson, C.et al. (2001). Curing kinetics and optimal cure schedules for underfill materials. Journal of Microelectron Energy, 31, 271-275.

Ibrahim, M. S., Faieza, A. A., Sapuan, S. M., & Tahir, S. M. (2011). Effect of filler loading and coupling agent on tensile and impact properties of polypropylene with oil palm ash composites. Key Engineering Material, 471-472, 1130-1135.

Ishak, M. R., Sapuan, S. M., Leman, Z., Rahman, M. Z. A., & Anwar, U. M. K. (2011). Characterization of sugar palm (arenga pinnata) fibres: tensile and thermal properties. Journal of Thermal Analysis and Calorimetry, (in press)

Ismail, H., & Ramli, R. (2008). Organoclay filled natural rubber nanocomposites: the effect of filler loading and mixing method. Journal of Reinfoced Plastics and Composites, 27, 1909-1924.

Jeffrey, K. J. T., Tarlochan, F., & Rahman, M. M. (2011). Residual strength of chop strand mats glass fiber/epoxy composite structures: effect of temperature and water absorption. International Journal of Automotive and Mechanical Engineering, 4, 504-519.

Liu, Y. L., Wei, W. L., Hsu, K. Y., & Ho, W. H. 2004. Thermal stability of epoxy-silica hybrid materials by thermogravimetric analysis. Thermochim ACTA , 412, 139- 147.

Moczo, J., & Pukanszky, B. (2008). Polymer micro and nanocomposites: structure, interactions, properties. Journal of Industrial and Engineering Chemistry, 14, 535-563.

Oksman, K., Wallström, L., Berglund, L. & Romildo, D. (2002). Morphology and mechanical properties of unidirectional sisal–epoxy composites. Journal of Polymer Sciences, 84, 2358-2365.

Popa, M., Arnautu, M., & Davydov, Y. (2002). The interface in polymer matrix composites. In A.K. Kulshreshtha and C. Vasile, Handbook Of Poymer Blends And Composites (pp. 251-291). UK: Rapra Techn. Ltd.

Ray, D., & Rout, J. (2005). Thermoset biocomposites. In Natural Fibres, Biopolymers and Biocomposites (pp. 291-345). Boca Raton: CRC Press.

Sahari, J., Sapuan, S. M., Ismarrubie, Z. N., & Rahman, M. Z. A. (2011). Comparative study of physical properties based on different parts of sugar palm fibre reinforced unsaturated polyester composites. Key Engineering Materials, 471- 472, 455-460.

Sapuan, S. M., & Maleque, M. A. (2005). Design and fabrication of natural woven fabric reinforced epoxy composite for household telephone stand. Materials and Design, 26, 65-71.

Sapuan, S. M. Harun, N., & Abbas, K. A. (2007). Design and fabrication of multipurpose table using a composite of epoxy and banana pseudo-stem fibres. Journal of Tropical Agriculture, 45(1/2), 66-68.

Suradi, S. S., Yunus, R. M., & Beg, M. D. H. (2011). Oil palm bio-fibre-reinforced polypropylene composites: effects of alkali fibre treatment and coupling agents. Journal of Composite Materials, 45(18), 1853-1861.

Tarrio, J. S, Beceiro, J. L., Naya, S., & Artiaga, R. (2008). Effect of silica content on thermal stability of fumed silica/epoxy composites. Polymer Degradation and Stability, 93, 2133-2137.

Zainudin, E. S., Sapuan, S. M., Abdan, K., & Mohamad, M. T. M. (2009). Thermal degradation of banana pseudo-stem fibre reinforced unplastisized polyniyl chloride composites. Materials and Design, 30, 557-562.

Downloads

Published

2012-06-30

How to Cite

[1]
M. . Ibrahim, S. . Sapuan, and A. . Faieza, “Mechanical and Thermal Properties of Composites from Unsaturated Polyester Filled with Oil Palm Ash”, J. Mech. Eng. Sci., vol. 2, no. 1, pp. 133–147, Jun. 2012.

Issue

Section

Article