Effect of layering pattern and fiber hybridization on viscoelastic properties of PALF/COIR hybrid epoxy composites

Authors

  • Mohit Mittal Department of Mechanical Engineering, Delhi Technological University, Delhi – 110042, India. Phone: +91-7988368530
  • Rajiv Chaudhary Department of Mechanical Engineering, Delhi Technological University, Delhi – 110042, India. Phone: +91-7988368530

DOI:

https://doi.org/10.15282/jmes.15.1.2021.23.0623

Keywords:

Pineapple leaf fiber, coconut husk fiber, polymer composite, dynamic mechanical thermal analysis, glass transition temperature

Abstract

To design and develop a hybrid biocomposite material for structural applications, it becomes necessary to determine the optimum fibers layering pattern. Therefore, in this research work, the different layered hybrid biocomposite boards i.e. bilayer pineapple/coir (P/C), trilayer (PCP, CPC), and intimately mixed (IM) were developed and characterized for viscoelastic properties. The composites were made by hand lay-up method, keeping the volume ratio of PALF and COIR 1:1 and the total fiber volume fraction is 0.40 volume of composite. Dynamic mechanical thermal analysis test was employed to characterize the viscoelastic behavior in terms of storage modulus, loss modulus, loss damping factor, and the glass transition temperature. Amongst all the different layered hybrid composites, the trilayer CPC has lowest value (0.635) of effectiveness coefficient with highest stiffness and activation energy (40.54 kJ/mole). It confirms the better fiber-matrix interaction at the interfacial region. The glass transition temperature of CF-EP and PF-EP was increased by 8.74% and 13.15% respectively by the synergistic hybridization of cellulosic fibers. The PCP layered composite possesses lowest value of phase transition energy (9.17 kJ/mole) and this was because of the poor fiber-matrix interfacial adhesion.

References

A. Atiqah, M. A. Maleque, M. Jawaid, M. Iqbal, “Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications,” Composite Part B: Engineering, vol. 56, pp. 68-73, 2014, doi.org/10.1016/j.compositesb.2013.08.019.

B. T. Mulyo and H. Yudiono, “Toughness analysis of pineapple leaves fiber composite as alternative material for SNI helmet,” J. Mech. Eng. Sci., vol. 13, no. 4, pp. 5961–5972, Dec. 2019, doi: 10.15282/jmes.13.4.2019.16.0472.

A. Shahzad, “Impact and fatigue properties of hemp-glass fiber hybrid biocomposites,” J. Reinf. Plast. Compos., vol. 30, no. 16, pp. 1389–1398, Aug. 2011, doi: 10.1177/0731684411425975.

M. Jawaid, H. P. S. A. Khalil, A. Hassan, and E. Abdallah, “Bi-layer Hybrid Biocomposites,” BioResources, vol. 7, no. 2, pp. 2344-2355, 2012.

M. Haq, R. Burgueño, A. K. Mohanty, and M. Misra, “Hybrid bio-based composites from blends of unsaturated polyester and soybean oil reinforced with nanoclay and natural fibers,” Compos. Sci. Technol., vol. 68, no. 15–16, pp. 3344–3351, Dec. 2008, doi: 10.1016/j.compscitech.2008.09.007.

V. S. Chevali, B. A. Nerenz, C. A. Ulven, and E. Kandare, “Mechanical Properties of Hybrid Lignocellulosic Fiber-Filled Acrylonitrile Butadiene Styrene (ABS) Biocomposites,” Polym. - Plast. Technol. Eng., vol. 54, no. 4, pp. 375–382, Mar. 2015, doi: 10.1080/03602559.2014.961078.

N. Ranganathan, K. Oksman, S. K. Nayak, and M. Sain, “Structure property relation of hybrid biocomposites based on jute, viscose and polypropylene: The effect of the fibre content and the length on the fracture toughness and the fatigue properties,” Compos. Part A Appl. Sci. Manuf., vol. 83, pp. 169–175, Apr. 2016, doi: 10.1016/j.compositesa.2015.10.037.

M. R. Kaiser, H. Anuar, and S. B. A. Razak, “Improvement in thermomechanical properties of injection molded nano-modified hybrid biocomposite,” J. Thermoplast. Compos. Mater., vol. 27, no. 7, pp. 992–1009, 2014, doi: 10.1177/0892705712461518.

M. M. Davoodi, S. M. Sapuan, D. Ahmad, A. Aidy, A. Khalina, and M. Jonoobi, “Concept selection of car bumper beam with developed hybrid bio-composite material,” Mater. Des., vol. 32, no. 10, pp. 4857–4865, Dec. 2011, doi: 10.1016/j.matdes.2011.06.011.

M. S. Sreekala, J. George, M. G. Kumaran, and S. Thomas, “The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres,” Compos. Sci. Technol., vol. 62, no. 3, pp. 339–353, Feb. 2002, doi: 10.1016/S0266-3538(01)00219-6.

S. Panthapulakkal and M. Sain, “Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites—Mechanical, water absorption and thermal properties,” J. Appl. Polym. Sci., vol. 103, no. 4, pp. 2432–2441, Feb. 2007, doi: 10.1002/app.25486.

M. M. Davoodi, S. M. Sapuan, D. Ahmad, A. Ali, A. Khalina, and M. Jonoobi, “Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam,” Mater. Des., vol. 31, no. 10, pp. 4927–4932, Dec. 2010, doi: 10.1016/j.matdes.2010.05.021.

S. K. Saw, G. Sarkhel, and A. Choudhury, “Effect of layering pattern on the physical, mechanical, and thermal properties of jute/bagasse hybrid fiber-reinforced epoxy novolac composites,” Polym. Compos., vol. 33, no. 10, pp. 1824–1831, Oct. 2012, doi: 10.1002/pc.22313.

C. Capela, S. E. Oliveira, J. Pestana, and J. A. M. Ferreira, “Effect of fiber length on the mechanical properties of high dosage carbon reinforced,” Procedia Struct. Integr., vol. 5, pp. 539–546, 2017, doi: 10.1016/j.prostr.2017.07.159.

A. Chafidz, M. Rizal, R. M. Faisal, M. Kaavessina, D. Hartanto, and S. M. AlZahrani, “Processing and properties of high density polyethylene/date palm fiber composites prepared by a laboratory mixing extruder,” J. Mech. Eng. Sci., vol. 12, no. 3, pp. 3771–3785, Sep. 2018, doi: 10.15282/jmes.12.3.2018.2.0333.

Q. Ahsan, T. S. S. Carron, and Z. Mustafa, “On the use of nano fibrillated kenaf cellulose fiber as reinforcement in polylactic acid biocomposites,” J. Mech. Eng. Sci., vol. 13, no. 2, pp. 4970–4988, 2019, doi: 10.15282/jmes.13.2.2019.15.0412.

Y. Nishitani, T. Yamanaka, T. Kajiyama, and T. Kitano, “Thermal Properties of Hemp Fiber Reinforced Plant-Derived Polyamide Biomass Composites and their Dynamic Viscoelastic Properties in Molten State,” in Viscoelastic and Viscoplastic Materials, InTech, 2016.

W. S. Widodo, R. Soenoko, M. A. Choiron, and A. A. Sonief, “Sealing performance analysis of composite gaskets made of silicone rubber filled with ramie natural fibers,” J. Mech. Eng. Sci., vol. 13, no. 4, pp. 6178–6194, Dec. 2019, doi: 10.15282/jmes.13.4.2019.28.0484.

J. Alexander and S. J. Elphej Churchill, “Mechanical Characterization of Baslat Based Natural Hybrid Composites for Aerospace Applications,” in IOP Conference Series: Materials Science and Engineering, 2017, vol. 197, no. 1, doi: 10.1088/1757-899X/197/1/012008.

S. S. Chee, M. Jawaid, and M. T. H. Sultan, “Thermal stability and dynamic mechanical properties of kenaf/bamboo fibre reinforced epoxy composites,” BioResources, vol. 12, no. 4, pp. 7118–7132, Nov. 2017, doi: 10.15376/biores.12.4.7118-7132.

Y. S. Song, J. T. Lee, D. S. Ji, M. W. Kim, S. H. Lee, and J. R. Youn, “Viscoelastic and thermal behavior of woven hemp fiber reinforced poly(lactic acid) composites,” Compos. Part B Eng., vol. 43, no. 3, pp. 856–860, Apr. 2012, doi: 10.1016/j.compositesb.2011.10.021.

S. Rwawiire, B. Tomkova, J. Militky, B. M. Kale, and P. Prucha, “Effect of Layering Pattern on the Mechanical Properties of Bark Cloth (Ficus natalensis) Epoxy Composites,” Int. J. Polym. Anal. Charact., vol. 20, no. 2, pp. 160–171, Feb. 2015, doi: 10.1080/1023666X.2015.988534.

M. Idicula, S. K. Malhotra, K. Joseph, and S. Thomas, “Effect of layering pattern on dynamic mechanical properties of randomly oriented short banana/sisal hybrid fiber-reinforced polyester composites,” J. Appl. Polym. Sci., vol. 97, no. 5, pp. 2168–2174, Sep. 2005, doi: 10.1002/app.21980.

R. Murugan, R. Ramesh, and K. Padmanabhan, “Investigation on static and dynamic mechanical properties of epoxy based woven fabric glass/carbon hybrid composite laminates,” in Procedia Engineering, Jan. 2014, vol. 97, pp. 459–468, doi: 10.1016/j.proeng.2014.12.270.

M. Jawaid, H. P. S. Abdul Khalil, and O. S. Alattas, “Woven hybrid biocomposites: Dynamic mechanical and thermal properties,” Compos. Part A Appl. Sci. Manuf., vol. 43, no. 2, pp. 288–293, Feb. 2012, doi: 10.1016/j.compositesa.2011.11.001.

L. A. Pothan, Z. Oommen, and S. Thomas, “Dynamic mechanical analysis of banana fiber reinforced polyester composites,” Compos. Sci. Technol., vol. 63, no. 2, pp. 283–293, Feb. 2003, doi: 10.1016/S0266-3538(02)00254-3.

D. Romanzini, A. Lavoratti, H. L. Ornaghi, S. C. Amico, and A. J. Zattera, “Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites,” Mater. Des., vol. 47, pp. 9–15, May 2013, doi: 10.1016/j.matdes.2012.12.029.

M. Mittal, R. C.-M. R. Express, and undefined 2018, “Effect of fiber content on thermal behavior and viscoelastic properties of PALF/Epoxy and COIR/Epoxy composites,” Materials Research Express, vol. 5, no. 12, 2018.

Downloads

Published

2021-03-22

How to Cite

[1]
M. Mittal and R. Chaudhary, “Effect of layering pattern and fiber hybridization on viscoelastic properties of PALF/COIR hybrid epoxy composites”, J. Mech. Eng. Sci., vol. 15, no. 1, pp. 7894–7906, Mar. 2021.