Impingement of coaxial jet on convex element for confined and unconfined flow

Authors

  • Anilkumar M. Hanchinal Department of Mechanical Engineering, Jain C. E. T., Hubballi, Karnataka, India-580031. Phone: +91-9740169907. http://orcid.org/0000-0003-2710-1103
  • V.V. Katti KLS VDIT, Haliyal, Karnataka, India-581329.

DOI:

https://doi.org/10.15282/jmes.14.2.2020.09.0521

Keywords:

Jet impingement, Co-axial Jet, Pressure coefficient, Swirl Flow, Convex test element

Abstract

Jet impingement is most effective and active method for cooling and heating of any surface or system. The ability of jet impingement is greatly influenced by nozzle configuration and other dimensional and non-dimensional parameters. Impinging coaxial swirl jet generates interesting flow filed on any test surface and influences both pressure and heat distribution on impinging surfaces. In present study, an experimental investigation is carried to analyze the effects of turbulent coaxial swirl jet on the pressure distribution (PC & PCO) on convex element. For better and acceptable results, the desirable parameters are identified from previous research works. The present experimental result highlights the independency of pressure coefficient (PC) for jet-Reynolds number (Re=70000 to 45000), effect of circumferential angle (θ) or inclination of test element, effect of jet exit to test element distance (Z/dh) and effect of confinement on PC & PCO pattern on a convex test element. The higher pressure coefficient value are obtained at lower Z/dh = 1 & at θ = 15° to 12°and significant drop in the values are seen with increase in the Z/dh & θ. At θ = 20° to 30° the value of PC & PCO reaches to negative magnitude. The use of confinement tube enhancementthe pressure distribution (PC & PCO) by 61% to 64% is seen for the same flow conditions.

References

N. Celik and H. Eren, “Heat transfer due to impinging co-axial jets and the jets’ fluid flow characteristics,” Experimental Thermal and Fluid Science, vol. 33, no. 4, pp. 715–727, Apr. 2009, doi: 10.1016/j.expthermflusci.2009.01.007.

H. Q. Yang, T. Kim, T. J. Lu, and K. Ichimiya, “Flow structure, wall pressure and heat transfer characteristics of impinging annular jet with/without steady swirling,” International Journal of Heat and Mass Transfer, vol. 53, no. 19–20, pp. 4092–4100, Sep. 2010, doi: 10.1016/j.ijheatmasstransfer.2010.05.029.

W. Lee, Y. Park, K. Kwon, and R. Taghavi, “Control of shear perturbation in coaxial swirling turbulent jets,” Aerospace Science and Technology, vol. 14, no. 7, pp. 472–486, Oct. 2010, doi: 10.1016/j.ast.2010.03.002.

K. K. J. Ranga Dinesh, M. P. Kirkpatrick, and K. W. Jenkins, “Investigation of the influence of swirl on a confined coannular swirl jet,” Computers & Fluids, vol. 39, no. 5, pp. 756–767, May 2010, doi: 10.1016/J.COMPFLUID.2009.12.004.

N. Celik, “Effects of the surface roughness on heat transfer of perpendicularly impinging co-axial jet,” Heat and Mass Transfer/Waerme- und Stoffuebertragung, vol. 47, no. 10, pp. 1209–1217, Oct. 2011, doi: 10.1007/s00231-011-0785-9.

A. Adzlan and H. Gotoda, “Experimental investigation of vortex breakdown in a coaxial swirling jet with a density difference,” Chemical Engineering Science, vol. 80, pp. 174–181, Oct. 2012, doi: 10.1016/J.CES.2012.05.027.

A. Ianiro and G. Cardone, “Heat transfer rate and uniformity in multichannel swirling impinging jets,” Applied Thermal Engineering, vol. 49, pp. 89–98, Dec. 2012, doi: 10.1016/J.APPLTHERMALENG.2011.10.018.

C. Nuntadusit, M. Wae-hayee, A. Bunyajitradulya, and S. Eiamsa-ard, “Heat transfer enhancement by multiple swirling impinging jets with twisted-tape swirl generators,” International Communications in Heat and Mass Transfer, vol. 39, no. 1, pp. 102–107, Jan. 2012, doi: 10.1016/J.ICHEATMASSTRANSFER.2011.10.003.

H. Lu, H. Liu, W. Li, and J. Xu, “Factors influencing the characterization of bubbles produced by coaxial gas–particle jet flow,” Fuel, vol. 108, pp. 723–730, Jun. 2013, doi: 10.1016/J.FUEL.2013.01.078.

T. H. New and E. Tsioli, “Effects of area-ratio on the near-field flow characteristics and deflection of circular inclined coaxial jets,” Experimental Thermal and Fluid Science, vol. 54, pp. 225–236, Apr. 2014, doi: 10.1016/J.EXPTHERMFLUSCI.2013.12.022.

M. Fénot, E. Dorignac, and G. Lalizel, “Heat transfer and flow structure of a multichannel impinging jet,” International Journal of Thermal Sciences, vol. 90, pp. 323–338, Apr. 2015, doi: 10.1016/J.IJTHERMALSCI.2014.12.006.

M. Wannassi and F. Monnoyer, “Fluid flow and convective heat transfer of combined swirling and straight impinging jet arrays,” Applied Thermal Engineering, vol. 78, pp. 62–73, Mar. 2015, doi: 10.1016/J.APPLTHERMALENG.2014.12.043.

S. Eiamsa-ard, K. Nanan, and K. Wongcharee, “Heat transfer visualization of co/counter-dual swirling impinging jets by thermochromic liquid crystal method,” International Journal of Heat and Mass Transfer, vol. 86, pp. 600–621, Jul. 2015, doi: 10.1016/J.IJHEATMASSTRANSFER.2015.03.031.

H. Boualia, A. Hidouri, M. Chrigui, and J.-C. Sautet, “Experimental investigation of central jet displacements on the turbulence and gas dynamics of a coaxial burner,” Applied Thermal Engineering, vol. 116, pp. 303–315, Apr. 2017, doi: 10.1016/J.APPLTHERMALENG.2017.01.085.

P. Balakrishnan and K. Srinivasan, “Jet noise reduction using co-axial swirl flow with curved vanes,” Applied Acoustics, vol. 126, pp. 149–161, Nov. 2017, doi: 10.1016/J.APACOUST.2017.05.009.

S. Chouaieb, W. Kriaa, H. Mhiri, and P. Bournot, “Swirl generator effect on a confined coaxial jet characteristics,” International Journal of Hydrogen Energy, vol. 42, no. 48, pp. 29014–29025, Nov. 2017, doi: 10.1016/J.IJHYDENE.2017.08.061.

Z. U. Ahmed, Y. M. Al-Abdeli, and F. G. Guzzomi, “Heat transfer characteristics of swirling and non-swirling impinging turbulent jets,” International Journal of Heat and Mass Transfer, vol. 102, pp. 991–1003, Nov. 2016, doi: 10.1016/J.IJHEATMASSTRANSFER.2016.06.037.

Z. U. Ahmed, Y. M. Al-Abdeli, and F. G. Guzzomi, “Flow field and thermal behaviour in swirling and non-swirling turbulent impinging jets,” International Journal of Thermal Sciences, vol. 114, pp. 241–256, Apr. 2017, doi: 10.1016/J.IJTHERMALSCI.2016.12.013.

E. Zeiny, M. Farhadi, and K. Sedighi, “Numerical investigation of the simultaneous influence of swirling flow and obstacles on plate in impinging jet,” International Journal of Heat and Technology, vol. 35, no. 1, pp. 59–66, Mar. 2017, doi: 10.18280/ijht.350108.

B. Markal, “Experimental investigation of heat transfer characteristics and wall pressure distribution of swirling coaxial confined impinging air jets,” International Journal of Heat and Mass Transfer, vol. 124, pp. 517–532, Sep. 2018, doi: 10.1016/J.IJHEATMASSTRANSFER.2018.03.101.

B. Markal and O. Aydin, “Experimental investigation of coaxial impinging air jets,” Applied Thermal Engineering, vol. 141, pp. 1120–1130, Aug. 2018, doi: 10.1016/J.APPLTHERMALENG.2018.06.066.

A. M. Hanchinal et al., “Study on Impingement of Air Jet from Orifice on Convex Surface for Unconfined Flow,” 2018. [Online]. Available: www.ijraset.com.

A. M. Hanchinal, A. Biradar, A. Karabhari, D. Pujar, V. Minajigi, and A. Professor, “Distribution of Wall Static Pressure on Flat Plate by Impenjing Air Jet from Orifice for Turbulent Flow,” 2018. [Online]. Available: www.ijraset.com.

S. Mohamed Illyas, B. R. Ramesh Bapu, and V. Venkata Subba Rao, “Heat transfer and flow visualization of swirling impinging jet on flat surface using helicoid inserts,” Journal of Visualization, vol. 21, no. 5, pp. 729–749, Oct. 2018, doi: 10.1007/s12650-018-0493-3.

N. V. S. Shankar and R. Shankar, “Experimental Investigation into Heat Transfer during Swirl Jet Impingement,” 2018. [Online]. Available: http://www.ripublication.com.

K. Kunnarak, P. Somravysin, S. Eiamsa-Ard, and V. Chuwattanakul, “Impingement cooling by round jet with longitudinal swirling strip,” International Journal of Mechanical Engineering and Robotics Research, vol. 7, no. 2, pp. 179–183, Mar. 2018, doi: 10.18178/ijmerr.7.2.179-183.

S. A. Schumaker and J. F. Driscoll, “Coaxial turbulent jet flames: Scaling relations for measured stoichiometric mixing lengths,” Proceedings of the Combustion Institute, vol. 32, no. 2, pp. 1655–1662, Jan. 2009, doi: 10.1016/J.PROCI.2008.06.051.

A. M. Hanchinal and V. v. Katti, “Effect of orifice geometry and orifice-to-test section spacing on distribution of wall static pressure on a convex surface,” Journal of Mechanical Engineering and Sciences, vol. 13, no. 2, pp. 4835–4845, 2019, doi: 10.15282/jmes.13.2.2019.05.0402.

G. M. Carlomagno and A. Ianiro, “Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance: A review,” Experimental Thermal and Fluid Science, vol. 58, pp. 15–35, Oct. 2014, doi: 10.1016/J.EXPTHERMFLUSCI.2014.06.010.

Y. Ozmen, “Confined impinging twin air jets at high Reynolds numbers,” Experimental Thermal and Fluid Science, vol. 35, no. 2, pp. 355–363, Feb. 2011, doi: 10.1016/J.EXPTHERMFLUSCI.2010.10.006.

Downloads

Published

2020-06-16

How to Cite

[1]
A. M. Hanchinal and V. Katti, “Impingement of coaxial jet on convex element for confined and unconfined flow”, J. Mech. Eng. Sci., vol. 14, no. 2, pp. 6652–6662, Jun. 2020.

Issue

Section

Article