Size-effect in microwave processing of engineering materials - A review


  • Dhirendra N. Gamit Gujarat Technological University, Ahmadabad, Gujarat, India - 382424 Phone: +919558809809
  • Mahesh K. Chudasama Mechanical Engineering Department, Government Engineering College, Dahod, Gujarat, India - 389151



Size-effect, microwave heating, metal, ceramic, polymer


The size of material units is especially critical in manufacturing processes where thermal energy interacts with the material. The microwave energy is widely used to process the materials in industries such as food processing, chemical, manufacturing etc. due to its unique heating characteristics. In microwave processing, energy is generated and absorbed inside the material during irradiation. The energy absorbed per unit volume of the material depends upon its size. The smaller size candidate materials have more effective surface area to absorb microwave energy than the bulk ones and usually yield lesser defects. This review paper summarizes the fundamentals of size-effect, microwave–materials interaction and input/output parameters in microwave material processing. Further, size-effect in microwave processing of different type of engineering materials (metal based, ceramic based and polymer based) have been discussed in terms of energy absorption and improvement in product attributes. The challenges in microwave processing of metal based materials have been identified and opportunities have been outlined in order to improve the properties vis-à-vis particle sizes during microwave processing.


M. S. Venkatesh and G. S. V. Raghavan, “An overview of microwave processing and dielectric properties of agri-food materials,” Biosyst. Eng., vol. 88, pp. 1–8, 2004, doi: 10.1016/j.biosystemseng.2004.01.007.

S. Chandrasekaran, S. Ramanathan, and T. Basak, “Microwave food processing-A review,” Food Res. Int., no. 52, pp. 243–261, 2013, doi: 10.1016/j.foodres.2013.02.033.

C. Leonelli and T. J. Mason, “Microwave and ultrasonic processing: Now a realistic option for industry,” Chem. Eng. Process. Process Intensif., vol. 49, pp. 885–900, 2010, doi: 10.1016/j.cep.2010.05.006.

N. Standish, H. K. Worner, and D. Y. Obuchowski, “Particle size effect in microwave heating of granular materials,” Powder Technol., vol. 66, no. 3, pp. 225–230, 1991, doi: 10.1016/0032-5910(91)80034-G.

A. Mondal, A. Shukla, A. Upadhyaya, and D. Agrawal, “Effect of porosity and particle size on microwave heating of copper,” Sci. Sinter., vol. 42, pp. 169–182, 2010, doi: 10.2298/SOS1002169M.

C. A. Crane, M. L. Pantoya, B. L. Weeks, and M. Saed, “The effects of particle size on microwave heating of metal and metal oxide powders,” Powder Technol., vol. 256, pp. 113–117, 2014, doi: 10.1016/j.powtec.2014.02.008.

S. Chandrasekaran, T. Basak, and R. Srinivasan, “Microwave heating characteristics of graphite based powder mixtures,” Int. Commun. Heat Mass Transf., vol. 48, pp. 22–27, 2013, doi: 10.1016/j.icheatmasstransfer.2013.09.008.

K. I. Rybakov et al., “Microwave heating of conductive powder materials,” J. Appl. Phys., vol. 023506, no. 99, pp. 1–9, 2006, doi: 10.1063/1.2159078.

N. Yoshikawa, E. Ishizuka, and S. Taniguchi, “Heating of metal particles in a single-mode microwave applicator,” Mater. Trans., vol. 47, no. 3, pp. 898–902, 2006, doi: 10.2320/matertrans.47.898.

M. Hayashi, Y. Yokoyama, and K. Nagata, “Effect of particle size and relative density on powdery Fe 3O4 microwave heating,” J. Microw. Power Electromagn. Energy, vol. 44, no. 4, pp. 198–206, 2010, doi: 10.1080/08327823.2010.11689788.

P. Mishra, G. Sethi, and A. Upadhyaya, “Modeling of microwave heating of particulate metals,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 37, no. 5, pp. 839–845, 2006, doi: 10.1007/s11663-006-0066-z.

H. Katsuki, N. Kamochi, and S. Komarneni, “Novel energy-saving materials for microwave heating,” Chem. Mater., vol. 20, no. 15, pp. 4803–4807, 2008, doi: 10.1021/cm801138n.

S. Chandrasekaran, T. Basak, and S. Ramanathan, “Experimental and theoretical investigation on microwave melting of metals,” J. Mater. Process. Technol., vol. 211, no. 3, pp. 482–487, 2011, doi: 10.1016/j.jmatprotec.2010.11.001.

R. Roy, D. Agrawal, J. Cheng, and S. Gedevanlshvili, “Full sintering of powdered-metal bodies in a microwave field,” Nature, vol. 399, no. 6737, pp. 668–670, 1999, doi: 10.1038/21390.

R. Raman Mishra and A. Sharma, “Microwave Sintering of Pure Metal Powders – A Review,” Int. J. Adv. Mech. Eng., vol. 4, no. 3, pp. 2250–3234, 2014, [Online]. Available:

C. Padmavathi, A. Upadhyaya, and D. Agrawal, “Microwave assisted sintering of Al-Cu-Mg-Si-Sn alloy,” J. Microw. Power Electromagn. Energy, vol. 46, no. 3, pp. 115–127, 2012, doi: 10.1080/08327823.2012.11689830.

S. K. Thakur, T. S. Kong, and M. Gupta, “Microwave synthesis and characterization of metastable (Al/Ti) and hybrid (Al/Ti + SiC) composites,” Mater. Sci. Eng. A, vol. 452–453, pp. 61–69, 2007, doi: 10.1016/j.msea.2006.10.156.

R. G. Chandrakanth, K. Rajkumar, and S. Aravindan, “Fabrication of copper-TiC-graphite hybrid metal matrix composites through microwave processing,” Int. J. Adv. Manuf. Technol., vol. 48, no. 5–8, pp. 645–653, 2010, doi: 10.1007/s00170-009-2474-0.

J. P. Cheng, “Microwave processing of WC-Co composities and ferroic titanates,” Mater. Res. Innov., vol. 1, no. 1, pp. 44–52, 1997, doi: 10.1007/s100190050017.

K. Rajkumar and S. Aravindan, “Microwave sintering of copper-graphite composites,” J. Mater. Process. Technol., vol. 209, no. 15–16, pp. 5601–5605, 2009, doi: 10.1016/j.jmatprotec.2009.05.017.

K. Rajkumar and S. Aravindan, “Tribological performance of microwave sintered copperTiCgraphite hybrid composites,” Tribol. Int., vol. 44, no. 4, pp. 347–358, 2011, doi: 10.1016/j.triboint.2010.11.008.

W. L. E. Wong and M. Gupta, “Development of Mg/Cu nanocomposites using microwave assisted rapid sintering,” Compos. Sci. Technol., vol. 67, no. 7–8, pp. 1541–1552, 2007, doi: 10.1016/j.compscitech.2006.07.015.

W. W. L. Eugene and M. Gupta, “Characteristics of aluminum and magnesium based nanocomposites processed using hybrid microwave sintering,” J. Microw. Power Electromagn. Energy, vol. 44, no. 1, pp. 14–27, 2010, doi: 10.1080/08327823.2010.11689773.

K. S. Tun and M. Gupta, “Development of magnesium/(yttria + nickel) hybrid nanocomposites using hybrid microwave sintering: Microstructure and tensile properties,” J. Alloys Compd., vol. 487, no. 1–2, pp. 76–82, 2009, doi: 10.1016/j.jallcom.2009.07.117.

W. L. E. Wong, S. Karthik, and M. Gupta, “Development of hybrid Mg/Al 2O 3 composites with improved properties using microwave assisted rapid sintering route,” J. Mater. Sci., vol. 40, pp. 3395–3402, 2005, doi: 10.1007/s10853-005-0419-z.

C. Leonelli, P. Veronesi, L. Denti, A. Gatto, and L. Iuliano, “Microwave assisted sintering of green metal parts,” J. Mater. Process. Technol., vol. 205, no. 1–3, pp. 489–496, 2008, doi: 10.1016/j.jmatprotec.2007.11.263.

A. Upadhyaya, S. K. Tiwari, and P. Mishra, “Microwave sintering of W-Ni-Fe alloy,” Scr. Mater., vol. 56, no. 1, pp. 5–8, 2007, doi: 10.1016/j.scriptamat.2006.09.010.

S. S. Panda, V. Singh, A. Upadhyaya, and D. Agrawal, “Sintering response of austenitic (316L) and ferritic (434L) stainless steel consolidated in conventional and microwave furnaces,” Scr. Mater., vol. 54, no. 12, pp. 2179–2183, 2006, doi: 10.1016/j.scriptamat.2006.02.034.

G. Sethi, A. Upadhyaya, and D. Agrawal, “Microwave and conventional sintering of premixed and prealloyed Cu-12Sn Bronze,” Science of Sintering, vol. 35, no. 2. pp. 49–65, 2003, doi: 10.2298/SOS0302049S.

S. Seetharaman, J. Subramanian, K. S. Tun, A. S. Hamouda, and M. Gupta, “Synthesis and characterization of nano boron nitride reinforced magnesium composites produced by the microwave sintering method,” Materials (Basel)., vol. 6, no. 5, pp. 1940–1955, 2013, doi: 10.3390/ma6051940.

P. Balasundar, P. Narayanasamy, S. I. Srikrishna Ramya, T. Ramkumar, and S. Senthil, “Characterisation of ferric oxide reinforced magnesium nano-composites processed through microwave sintering/powder metallurgy,” Int. J. Microstruct. Mater. Prop., vol. 13, no. 6, pp. 447–453, 2018, doi: 10.1504/IJMMP.2018.097784.

Z. Asadipanah and M. Rajabi, “Production of Al–ZrB2 nano-composites by microwave sintering process,” J. Mater. Sci. Mater. Electron., vol. 6, no. 8, pp. 6148–6156, 2015, doi: 10.1007/s10854-015-3195-9.

M. Mattli, P. Matli, A. Shakoor, and A. Amer Mohamed, “Structural and Mechanical Properties of Amorphous Si3N4 Nanoparticles Reinforced Al Matrix Composites Prepared by Microwave Sintering,” Ceramics, vol. 2, pp. 126–134, 2019, doi: 10.3390/ceramics2010012.

Y. Fang, D. K. Agrawal, D. M. Roy, and R. Roy, “Microwave Sintering of Hydroxyapatite Ceramics,” J. Mater. Res., vol. 9, no. 1, pp. 180–187, 1994, doi: 10.1557/JMR.1994.0180.

S. Dasgupta, S. Tarafder, A. Bandyopadhyay, and S. Bose, “Effect of grain size on mechanical, surface and biological properties of microwave sintered hydroxyapatite,” Mater. Sci. Eng. C, vol. 33, no. 5, pp. 2846–2854, 2013, doi: 10.1016/j.msec.2013.03.004.

R. R. Menezes and R. H. G. A. Kiminami, “Microwave sintering of alumina-zirconia nanocomposites,” J. Mater. Process. Technol., vol. 203, no. 1–3, pp. 513–517, 2008, doi: 10.1016/j.jmatprotec.2007.10.057.

A. Mondal, A. Upadhyaya, and D. Agrawal, “Effect of heating mode on sintering of tungsten,” Int. J. Refract. Met. Hard Mater., vol. 28, no. 5, pp. 597–600, 2010, doi: 10.1016/j.ijrmhm.2010.05.002.

J. Samuels and J. R. Brandon, “Effect of composition on the enhanced microwave sintering of alumina-based ceramic composites,” J. Mater. Sci., vol. 27, no. 12, pp. 3259–3265, 1992, doi: 10.1007/BF01116022.

Y. Cheng, S. Sun, and H. Hu, “Preparation of Al2O3/TiC micro-composite ceramic tool materials by microwave sintering and their microstructure and properties,” Ceram. Int., vol. 40, no. PB, pp. 16761–16766, 2014, doi: 10.1016/j.ceramint.2014.08.044.

K. H. Brosnan, G. L. Messing, and D. K. Agrawal, “Microwave sintering of alumina at 2.45 GHz,” J. Am. Ceram. Soc., vol. 86, no. 8, pp. 1307–1312, 2003, doi: 10.1111/j.1151-2916.2003.tb03467.x.

H. Takahashi, Y. Numamoto, J. Tani, K. Matsuta, J. Qiu, and S. Tsurekawa, “Lead-free barium titanate ceramics with large piezoelectric constant fabricated by microwave sintering,” Japanese J. Appl. Physics, Part 2 Lett., vol. 45, pp. 30–32, 2006, doi: 10.1143/JJAP.45.L30.

J. Ru et al., “Microwave-assisted preparation of submicron-sized FeTiO3 powders,” Ceram. Int., vol. 40, no. 5, pp. 6799–6805, 2014, doi: 10.1016/j.ceramint.2013.11.142.

F. A. C. Oliveira, T. Marcelo, C. Alves, M. Santos, J. Mascarenhas, and B. Trindade, “Effect of particle size of starting oxide powders on the performance of doped-lanthanum oxyapatite produced by mechanical alloying followed by microwave sintering,” Adv. Powder Technol., vol. 25, no. 5, pp. 1455–1461, 2014, doi: 10.1016/j.apt.2014.03.021.

A. Thuault, E. Savary, J. Bazin, and S. Marinel, “Microwave sintering of large size pieces with complex shape,” J. Mater. Process. Technol., vol. 214, no. 2, pp. 470–476, 2014, doi: 10.1016/j.jmatprotec.2013.09.030.

A. Kumar, V. Agarwala, and D. Singh, “Effect of milling on dielectric and microwave absorption properties of SiC based composites,” Ceram. Int., vol. 40, pp. 1797–1806, 2014, doi: 10.1016/j.ceramint.2013.07.080.

M. P. McNeal, S. J. Jang, and R. E. Newnham, “The effect of grain and particle size on the microwave properties of barium titanate (BaTiO3),” J. Appl. Phys., vol. 83, no. 6, pp. 3288–3297, 1998, doi: 10.1063/1.367097.

R. Rumman, L. C. Chuan, J. S. Quinton, and R. Ghomashchi, “Mechanical Properties and Microstructural Behaviour of Microwave Sintered WC–Co,” Met. Mater. Int., pp. 1–10, 2019, doi: 10.1007/s12540-019-00364-6.

J. Ma et al., “Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts,” J. Appl. Phys., vol. 101, no. 7, pp. 1–8, 2007, doi: 10.1063/1.2713087.

L. Gil-Flores et al., “Microstructure and mechanical properties of 5.8 GHz microwave-sintered ZrO2/Al2O3 ceramics,” Ceram. Int., vol. 45, no. 14, pp. 18059–18064, 2019, doi: 10.1016/j.ceramint.2019.06.026.

Z. Yin, J. Yuan, Z. Wang, H. Hu, Y. Cheng, and X. Hu, “Preparation and properties of an Al2O3/Ti(C,N) micro-nano-composite ceramic tool material by microwave sintering,” Ceram. Int., vol. 42, no. 3, pp. 4099–4106, 2016, doi: 10.1016/j.ceramint.2015.11.082.

D. Hong, Z. Yin, S. Yan, and W. Xu, “Fine grained Al 2 O 3 /SiC composite ceramic tool material prepared by two-step microwave sintering,” Ceram. Int., vol. 45, no. 9, pp. 11826–11832, 2019, doi: 10.1016/j.ceramint.2019.03.061.

K. Saitou, “Microwave sintering of iron, cobalt, nickel, copper and stainless steel powders,” Scr. Mater., vol. 54, no. 5, pp. 875–879, 2006, doi: 10.1016/j.scriptamat.2005.11.006.

M. Jain et al., “Microwave sintering: A new approach to fine-grain tungsten - II,” Int. J. Powder Metall. (Princeton, New Jersey), vol. 42, pp. 53–57, 2006.

R. M. Anklekar, K. Bauer, D. Agrawal, and R. Roy, “Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts,” Powder Metall., vol. 48, no. 1, pp. 39–46, 2005, doi: 10.1179/003258905X37657.

M. Oghbaei and O. Mirzaee, “Microwave versus conventional sintering: A review of fundamentals, advantages and applications,” J. Alloys Compd., vol. 494, no. 1–2, pp. 175–189, 2010, doi: 10.1016/j.jallcom.2010.01.068.

O. Ertugrul, H. S. Park, K. Onel, and M. Willert-Porada, “Effect of particle size and heating rate in microwave sintering of 316L stainless steel,” Powder Technol., vol. 253, pp. 703–709, 2014, doi: 10.1016/j.powtec.2013.12.043.

A. K. Sharma, S. Aravindhan, and R. Krishnamurthy, “Microwave glazing of alumina-titania ceramic composite coatings,” Mater. Lett., vol. 50, no. 5–6, pp. 295–301, 2001, doi: 10.1016/S0167-577X(01)00243-9.

A. K. Sharma and R. Krishnamurthy, “Microwave processing of sprayed alumina composite for enhanced performance,” J. Eur. Ceram. Soc., vol. 22, no. 16, pp. 2849–2860, 2002, doi: 10.1016/S0955-2219(02)00051-1.

S. Das, A. K. Mukhopadhyay, S. Datta, G. C. Das, and D. Basu, “Hard glass-ceramic coating by microwave processing,” J. Eur. Ceram. Soc., vol. 28, no. 4, pp. 729–738, 2008, doi: 10.1016/j.jeurceramsoc.2007.08.003.

S. Shen et al., “Microwave assisted deposition of hydroxyapatite coating on a magnesium alloy with enhanced corrosion resistance,” Mater. Lett., vol. 159, pp. 146–149, 2015, doi: 10.1016/j.matlet.2015.06.096.

M. S. Srinath, A. K. Sharma, and P. Kumar, “A novel route for joining of austenitic stainless steel (SS-316) using microwave energy,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 225, no. 7, pp. 1083–1091, 2011, doi: 10.1177/2041297510393451.

M. S. Srinath, A. K. Sharma, and P. Kumar, “A new approach to joining of bulk copper using microwave energy,” Mater. Des., vol. 32, no. 5, pp. 2685–2694, 2011, doi: 10.1016/j.matdes.2011.01.023.

C. Ageorges, L. Ye, and M. Hou, “Advances in fusion bonding techniques for joining thermoplastic matrix composites: A review,” Compos. - Part A Appl. Sci. Manuf., vol. 32, no. 6, pp. 839–857, 2001, doi: 10.1016/S1359-835X(00)00166-4.

I. Singh, P. Bajpai, D. Malik, A. Sharma, and P. Kumar, “Feasibility Study on Microwave Joining of ‘Green Composites,’” Akademeia, vol. 1, no. 1, pp. 1–6, 2011.

P. K. D. V. Yarlagadda and T. C. Chai, “An investigation into welding of engineering thermoplastics using focused microwave energy,” J. Mater. Process. Technol., vol. 74, no. 1–3, pp. 199–212, 1998, doi: 10.1016/S0924-0136(97)00269-0.

P. K. Bajpai, I. Singh, and J. Madaan, “Joining of natural fiber reinforced composites using microwave energy: Experimental and finite element study,” Mater. Des., vol. 35, pp. 596–602, 2012, doi: 10.1016/j.matdes.2011.10.007.

D. Gamit, R. R. Mishra, and A. K. Sharma, “Joining of mild steel pipes using microwave hybrid heating at 2.45 GHz and joint characterization,” J. Manuf. Process., vol. 27, pp. 158–168, 2017, doi: 10.1016/j.jmapro.2017.04.028.

A. Bansal, A. K. Sharma, P. Kumar, and S. Das, “Characterization of bulk stainless steel joints developed through microwave hybrid heating,” Mater. Charact., vol. 91, pp. 34–41, 2014, doi: 10.1016/j.matchar.2014.02.005.

M. S. Srinath, A. K. Sharma, and P. Kumar, “Investigation on microstructural and mechanical properties of microwave processed dissimilar joints,” J. Manuf. Process., vol. 13, no. 2, pp. 141–146, 2011, doi: 10.1016/j.jmapro.2011.03.001.

R. I. Badiger, S. Narendranath, and M. S. Srinath, “Joining of Inconel-625 alloy through microwave hybrid heating and its characterization,” J. Manuf. Process., vol. 18, pp. 117–123, 2015, doi: 10.1016/j.jmapro.2015.02.002.

R. I. Badiger, S. Narendranath, and M. S. Srinath, “Optimization of Process Parameters by Taguchi Grey Relational Analysis in Joining Inconel-625 Through Microwave Hybrid Heating,” Metallogr. Microstruct. Anal., vol. 8, no. 1, pp. 92–108, 2019, doi: 10.1007/s13632-018-0508-4.

S. Aravindan and R. Krishnamurthy, “Joining of ceramic composites by microwave heating,” Mater. Lett., vol. 38, no. 4, pp. 245–249, 1999, doi: 10.1016/S0167-577X(98)00166-9.

N. Kondo, H. Hyuga, H. Kita, and K. Hirao, “Joining of silicon nitride by microwave local heating,” J. Ceram. Soc. Japan, vol. 118, no. 1382, pp. 959–962, 2010, doi: 10.2109/jcersj2.118.959.

A. Ahmed and E. Siores, “Microwave joining of 48% alumina-32% zirconia-20% silica ceramics,” J. Mater. Process. Technol., vol. 118, no. 1–3, pp. 88–94, 2001, doi: 10.1016/S0924-0136(01)00892-5.

D. Gupta and A. K. Sharma, “Development and microstructural characterization of microwave cladding on austenitic stainless steel,” Surf. Coatings Technol., vol. 205, no. 21–22, pp. 5147–5155, 2011, doi: 10.1016/j.surfcoat.2011.05.018.

D. Gupta and A. K. Sharma, “Microwave cladding: A new approach in surface engineering,” J. Manuf. Process., vol. 16, no. 2, pp. 176–182, 2014, doi: 10.1016/j.jmapro.2014.01.001.

D. Gupta and A. K. Sharma, “Investigation on sliding wear performance of WC10Co2Ni cladding developed through microwave irradiation,” Wear, vol. 271, no. 9–10, pp. 1642–1650, 2011, doi: 10.1016/j.wear.2010.12.037.

S. Zafar and A. K. Sharma, “Development and characterisations of WC-12Co microwave clad,” Mater. Charact., vol. 96, pp. 241–248, 2014, doi: 10.1016/j.matchar.2014.08.015.

S. Zafar and A. K. Sharma, “On Friction and Wear Behavior of WC-12Co Microwave Clad,” Tribol. Trans., vol. 58, no. 4, pp. 584–591, 2015, doi: 10.1080/10402004.2014.996310.

S. Zafar and A. K. Sharma, “Dry sliding wear performance of nanostructured WC-12Co deposited through microwave cladding,” Tribol. Int., vol. 91, pp. 14–22, 2015, doi: 10.1016/j.triboint.2015.06.023.

S. Zafar and A. K. Sharma, “Investigations on flexural performance and residual stresses in nanometric WC-12Co microwave clads,” Surf. Coatings Technol., vol. 291, pp. 413–422, 2016, doi: 10.1016/j.surfcoat.2016.03.009.

S. Zafar and A. K. Sharma, “Abrasive and erosive wear behaviour of nanometric WC-12Co microwave clads,” Wear, vol. 346, pp. 29–45, 2016, doi: 10.1016/j.wear.2015.11.003.

R. R. Mishra and A. K. Sharma, “On mechanism of in-situ microwave casting of aluminium alloy 7039 and cast microstructure,” Mater. Des., vol. 112, pp. 97–106, 2016, doi: 10.1016/j.matdes.2016.09.041.

R. R. Mishra and A. K. Sharma, “Structure-property correlation in Al–Zn–Mg alloy cast developed through in-situ microwave casting,” Mater. Sci. Eng. A, vol. 688, pp. 532–544, 2017, doi: 10.1016/j.msea.2017.02.021.

R. R. Mishra and A. K. Sharma, “On melting characteristics of bulk Al-7039 alloy during in-situ microwave casting,” Appl. Therm. Eng., vol. 111, pp. 660–675, 2017, doi: 10.1016/j.applthermaleng.2016.09.122.

R. R. Mishra and A. K. Sharma, “Effect of Solidification Environment on Microstructure and Indentation Hardness of Al–Zn–Mg Alloy Casts Developed Using Microwave Heating,” Int. J. Met., vol. 12, pp. 370–382, 2018, doi: 10.1007/s40962-017-0176-1.

P. C. Sung, T. H. Chiu, and S. C. Chang, “Microwave curing of carbon nanotube/epoxy adhesives,” Compos. Sci. Technol., vol. 104, pp. 97–103, 2014, doi: 10.1016/j.compscitech.2014.09.003.

C. Wang, T. Chen, S. Chang, S. Cheng, and T. Chin, “Strong carbon-nanotube-polymer bonding by microwave irradiation,” Adv. Funct. Mater., vol. 17, no. 12, pp. 1979–1983, 2007, doi: 10.1002/adfm.200601011.

I. M. De Rosa, A. Dinescu, F. Sarasini, M. S. Sarto, and A. Tamburrano, “Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyester composites containing nickel-coated carbon fibers,” Compos. Sci. Technol., vol. 70, pp. 102–109, 2010, doi: 10.1016/j.compscitech.2009.09.011.

N. Verma, S. Zafar, and M. Talha, “Influence of nano-hydroxyapatite on mechanical behavior of microwave processed polycaprolactone composite foams,” Mater. Res. Express, vol. 6, pp. 1–14, 2019, doi: 10.1088/2053-1591/ab260d.

V. K. Rangari, M. S. Bhuyan, and S. Jeelani, “Microwave processing and characterization of EPON 862/CNT nanocomposites,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 168, pp. 117–121, 2010, doi: 10.1016/j.mseb.2010.01.013.

G. Arora, H. Pathak, and S. Zafar, “Fabrication and characterization of microwave cured high-density polyethylene/carbon nanotube and polypropylene/carbon nanotube composites,” J. Compos. Mater., vol. 53, pp. 2091–2104, 2019, doi: 10.1177/0021998318822705.

K. R. Paton and A. H. Windle, “Efficient microwave energy absorption by carbon nanotubes,” Carbon N. Y., vol. 46, pp. 1935–1941, 2008, doi: 10.1016/j.carbon.2008.08.001.

M. Kwak, P. Robinson, A. Bismarck, and R. Wise, “Microwave curing of carbon-epoxy composites: Penetration depth and material characterisation,” Compos. Part A Appl. Sci. Manuf., vol. 75, pp. 18–27, 2015, doi: 10.1016/j.compositesa.2015.04.007.

F. Liu, X. Qian, X. Wu, C. Guo, Y. Lei, and J. Zhang, “The response of carbon black filled high-density polyethylene to microwave processing,” J. Mater. Process. Technol., vol. 210, pp. 1991–1996, 2010, doi: 10.1016/j.jmatprotec.2010.07.014.

H. Wang, D. Zhu, W. Zhou, and F. Luo, “Electromagnetic and microwave absorbing properties of polyimide nanocomposites at elevated temperature,” J. Alloys Compd., vol. 648, pp. 313–319, 2015, doi: 10.1016/j.jallcom.2015.07.006.

D. A. Makeiff and T. Huber, “Microwave absorption by polyaniline-carbon nanotube composites,” Synth. Met., vol. 156, no. 7–8, pp. 497–505, 2006, doi: 10.1016/j.synthmet.2005.05.019.

V. S. Nisa, S. Rajesh, K. P. Murali, V. Priyadarsini, S. N. Potty, and R. Ratheesh, “Preparation, characterization and dielectric properties of temperature stable SrTiO3/PEEK composites for microwave substrate applications,” Compos. Sci. Technol., vol. 68, no. 1, pp. 106–112, 2008, doi: 10.1016/j.compscitech.2007.05.024.

S. Y. Tong et al., “Effect of Ni fillers on microwave absorption and effective permeability of NiCuZn ferrite/Ni/polymer functional composites,” J. Alloys Compd., vol. 550, pp. 39–45, 2013, doi: 10.1016/j.jallcom.2012.09.096.

F. X. Qin, Y. Luo, J. Tang, H. X. Peng, and C. Brosseau, “In-situ microwave characterization of ferromagnetic microwires-filled polymer composites: A mini review,” J. Magn. Magn. Mater., vol. 383, pp. 126–132, 2015, doi: 10.1016/j.jmmm.2014.10.052.

R. R. Mishra and A. K. Sharma, “Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing,” Compos. Part A Appl. Sci. Manuf., vol. 81, pp. 78–97, 2016, doi: 10.1016/j.compositesa.2015.10.035.

S. Singh, D. Gupta, V. Jain, and A. K. Sharma, “Microwave processing of materials and applications in manufacturing industries: A Review,” Mater. Manuf. Process., vol. 30, no. 1, pp. 1–29, 2015, doi: 10.1080/10426914.2014.952028.

R. R. Mishra and A. K. Sharma, “A Review of Research Trends in Microwave Processing of Metal-Based Materials and Opportunities in Microwave Metal Casting,” Crit. Rev. Solid State Mater. Sci., vol. 41, no. 3, pp. 217–255, 2016, doi: 10.1080/10408436.2016.1142421.

E. T. Thostenson and T. W. Chou, “Microwave processing: fundamentals and applications,” Compos. Part A Appl. Sci. Manuf., vol. 30, no. 9, pp. 1055–1071, 1999, doi: 10.1016/S1359-835X(99)00020-2.

D. K. Agrawal, “Microwave processing of ceramics,” Curr. Opin. Solid State Mater. Sci., vol. 3, no. 5, pp. 480–485, 1998, doi: 10.1016/S1359-0286(98)80011-9.

Y. V. Bykov, K. I. Rybakov, and V. E. Semenov, “High-temperature microwave processing of materials,” J. Phys. D. Appl. Phys., vol. 34, pp. 55–75, 2001, doi: 10.1088/0022-3727/34/13/201.

S. Chandrasekaran, S. Ramanathan, and T. Basak, “Microwave material processing-a review,” AIChE J., vol. 58, no. 2, pp. 330–363, 2012, doi: 10.1002/aic.12766.

Z. P. Bažant, “Size effect on structural strength: A review,” Arch. Appl. Mech., vol. 69, pp. 703–725, 1999, doi: 10.1007/s004190050252.

A. K. Sharma and R. R. Mishra, “Role of particle size in microwave processing of metallic material systems,” Mater. Sci. Technol. (United Kingdom), vol. 34, no. 2, pp. 123–137, 2018, doi: 10.1080/02670836.2017.1412043.

D. E. Clark, D. C. Folz, and J. K. West, “Processing materials with microwave energy,” Mater. Sci. Eng. A, vol. 287, no. 2, pp. 153–158, 2000, doi: 10.1016/s0921-5093(00)00768-1.

Z. Xie, J. Yang, X. Huang, and Y. Huang, “Microwave processing and properties of ceramics with different dielectric loss,” J. Eur. Ceram. Soc., vol. 19, no. 3, pp. 381–387, 1999, doi: 10.1016/s0955-2219(98)00203-9.

R. R. Agrawal DK, Cheng JP, “New first principles of microwave-material interaction: discovering the role of the H field and anisothermal reactions,” Ceram. Trans., vol. 111, pp. 471–488, 2001.

L. Z. Wu, J. Ding, H. B. Jiang, L. F. Chen, and C. K. Ong, “Particle size influence to the microwave properties of iron based magnetic particulate composites,” J. Magn. Magn. Mater., vol. 285, pp. 233–239, 2005, doi: 10.1016/j.jmmm.2004.07.045.

V. M. Petrov and V. V. Gagulin, “Microwave absorbing materials,” Inorg. Mater., vol. 37, no. 2, pp. 93–98, 2001, doi: 10.1023/A:1004171120638.

B. Zhang, G. Lu, Y. Feng, J. Xiong, and H. Lu, “Electromagnetic and microwave absorption properties of Alnico powder composites,” J. Magn. Magn. Mater., vol. 299, no. 1, pp. 205–210, 2006, doi: 10.1016/j.jmmm.2005.04.003.

Nishitani T, “Method for sintering refrectories and an apparatus,” US Patent. 4,147,911, 1979.

M. H. Hussin and N. A. C. Lah, “Effects of temperature on the surface and subsurface of Al-Mg-Si welded joints,” J. Mech. Eng. Sci., vol. 11, no. 2, pp. 2743–2754, 2017, doi: 10.15282/jmes.11.2.2017.15.0249.

K. I. Yaakob, M. Ishak, and S. R. A. Idris, “The effect of pulse welding parameters on weld geometry of boron steel using low power fibre laser,” J. Mech. Eng. Sci., vol. 11, no. 3, pp. 2895–2905, 2017, doi: 10.15282/jmes.11.3.2017.10.0261.

N. Kaushik, S. Singhal, Rajesh, P. Gahlot, and B. N. Tripathi, “Experimental investigations of friction stir welded AA6063 aluminum matrix composite,” J. Mech. Eng. Sci., vol. 12, no. 4, pp. 4127–4140, 2018, doi: 10.15282/jmes.12.4.2018.11.0357.

A. K. Sharma, M. S. Srinath, and K. Pradeep, “Microwave joining of metallic materials,” Indian Patent.1994., 2009.

A. K. Sharma and D. Gupta, “Method of cladding/coating of metallic and nonmetallic powders on metallic substrates by microwave irradiation,” Indian patent 527, 2010.

A. Bansal, A. K. Sharma, P. Kumar, and S. Das, “Investigation on microstructure and mechanical properties of the dissimilar weld between mild steel and stainless steel-316 formed using microwave energy,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 230, no. 3, pp. 439–448, 2016, doi: 10.1177/0954405414558694.

E. J. Minay, A. R. Boccaccini, P. Veronesi, V. Cannillo, and C. Leonelli, “Processing of novel glass matrix composites by microwave heating,” J. Mater. Process. Technol., vol. 155–156, no. 1–3, pp. 1749–1755, 2004, doi: 10.1016/j.jmatprotec.2004.04.264.

E. J. Minay, P. Veronesi, V. Cannillo, C. Leonelli, and A. R. Boccaccini, “Control of pore size by metallic fibres in glass matrix composite foams produced by microwave heating,” J. Eur. Ceram. Soc., vol. 24, no. 10–11, pp. 3203–3208, 2004, doi: 10.1016/j.jeurceramsoc.2003.11.015.

A. L. Higginbotham et al., “Carbon nanotube composite curing through absorption of microwave radiation,” Compos. Sci. Technol., vol. 68, pp. 3087–3092, 2008, doi: 10.1016/j.compscitech.2008.07.004.

F. Nanni, P. Travaglia, and M. Valentini, “Effect of carbon nanofibres dispersion on the microwave absorbing properties of CNF/epoxy composites,” Compos. Sci. Technol., vol. 69, no. 3–4, pp. 485–490, 2009, doi: 10.1016/j.compscitech.2008.11.026.

J. Li and J. K. Kim, “Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets,” Compos. Sci. Technol., vol. 67, pp. 2114–2120, 2007, doi: 10.1016/j.compscitech.2006.11.010.

C. Yang, H. Li, D. Xiong, and Z. Cao, “Hollow polyaniline/Fe3O4 microsphere composites: Preparation, characterization, and applications in microwave absorption,” React. Funct. Polym., vol. 69, pp. 137–144, 2009, doi: 10.1016/j.reactfunctpolym.2008.12.008.

D. L. Zhao, X. Li, and Z. M. Shen, “Microwave absorbing property and complex permittivity and permeability of epoxy composites containing Ni-coated and Ag filled carbon nanotubes,” Compos. Sci. Technol., vol. 68, pp. 2902–2908, 2008, doi: 10.1016/j.compscitech.2007.10.006.

K. Y. Park, J. H. Han, S. B. Lee, J. B. Kim, J. W. Yi, and S. K. Lee, “Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and NiFe particles,” Compos. Sci. Technol., vol. 69, pp. 1271–1278, 2009, doi: 10.1016/j.compscitech.2009.02.033.

N. Zhao, T. Zou, C. Shi, J. Li, and W. Guo, “Microwave absorbing properties of activated carbon-fiber felt screens (vertical-arranged carbon fibers)/epoxy resin composites,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 127, pp. 207–211, 2006, doi: 10.1016/j.mseb.2005.10.026.

Q. Ling, J. Sun, Q. Zhao, and Q. Zhou, “Microwave absorbing properties of linear low density polyethylene/ethylene-octene copolymer composites filled with short carbon fiber,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 162, pp. 162–166, 2009, doi: 10.1016/j.mseb.2009.03.023.

F. Qin and C. Brosseau, “A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles,” J. Appl. Phys., vol. 111, pp. 061301, 1–24, 2012, doi: 10.1063/1.3688435.




How to Cite

D. N. Gamit and M. K. Chudasama, “Size-effect in microwave processing of engineering materials - A review”, J. Mech. Eng. Sci., vol. 14, no. 2, pp. 6770–6788, Jun. 2020.