SENTIMENT CLASSIFICATION OF TWEETS WITH EXPLICIT WORD NEGATIONS AND EMOJI USING DEEP LEARNING
DOI:
https://doi.org/10.15282/ijsecs.9.2.2023.3.0114Keywords:
Sentiment Analysis, Long Short-Term Memory, Word Embedding, EmojiAbstract
The widespread use of social media platforms such as Twitter, Instagram, Facebook, and LinkedIn have had a huge impact on daily human interactions and decision-making. Owing to Twitter's widespread acceptance, users can express their opinions/sentiments on nearly any issue, ranging from public opinion, a product/service, to even a specific group of people. Sharing these opinions/sentiments results in a massive production of user content known as tweets, which can be assessed to generate new knowledge. Corporate insights, government policy formation, decision-making, and brand identity monitoring all benefit from analyzing the opinions/sentiments expressed in these tweets. Even though several techniques have been created to analyze user sentiments from tweets, social media engagements include negation words and emoji elements that, if not properly pre-processed, would result in misclassification. The majority of available pre-processing techniques rely on clean data and machine learning algorithms to annotate sentiment in unlabeled texts. In this study, we propose a text pre-processing approach that takes into consideration negation words and emoji characteristics in text data by translating these features into single contextual words in tweets to minimize context loss. The proposed preprocessor was evaluated on benchmark Twitter datasets using four deep learning algorithms: Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and Artificial Neural Network (ANN). The results showed that LSTM performed better than the approaches already discussed in the literature, with an accuracy of 96.36%, 88.41%, and 95.39%. The findings also suggest that pre-processing information like emoji and explicit word negations aids in the preservation of sentimental information. This appears to be the first study to classify sentiments in tweets while accounting for both explicit word negation conversion and emoji translation.
References
Hassonah, M. A., Al-Sayyed, R., Rodan, A., Al-Zoubi, A. M., Aljarah, I., & Faris, H. (2020). An efficient hybrid filter and
evolutionary wrapper approach for sentiment analysis of various topics on Twitter. Knowledge-Based Systems, 192, 105353.
https://doi.org/10.1016/j.knosys.2019.105353
Appel, G., Grewal, L., Hadi, R., & Stephen, A. T. (2020). The future of social media in marketing. Journal of the Academy of
Marketing Science, 48(1), 79–95. https://doi.org/10.1007/s11747-019-00695-1
Dwivedi, Y. K., Ismagilova, E., Hughes, D. L., Carlson, J., Filieri, R., Jacobson, J., Jain, V., Karjaluoto, H., Kefi, H., Krishen,
A. S., Kumar, V., Rahman, M. M., Raman, R., Rauschnabel, P. A., Rowley, J., Salo, J., Tran, G. A., & Wang, Y. (2021). Setting
the future of digital and social media marketing research: Perspectives and research propositions. International Journal of
Information Management, 59. https://doi.org/10.1016/j.ijinfomgt.2020.102168
Singh, P. K., & Paul, S. (2021). Deep Learning Approach for Negation Handling in Sentiment Analysis. IEEE Access, 9, 102579–
https://doi.org/10.1109/ACCESS.2021.3095412
Liu, C., Fang, F., Lin, X., Cai, T., Tan, X., Liu, J., & Lu, X. (2021). Improving sentiment analysis accuracy with emoji embedding.
Journal of Safety Science and Resilience, 2(4), 246–252. https://doi.org/10.1016/J.JNLSSR.2021.10.003
Chen, X., Rao, Y., Xie, H., Wang, F. L., Zhao, Y., & Yin, J. (2019). Sentiment Classification Using Negative and Intensive
Sentiment Supplement Information. Data Science and Engineering 2019 4:2, 4(2), 109–118. https://doi.org/10.1007/S41019-
-0094-8
Shardlow, M., Gerber, L., & Nawaz, R. (2022). One emoji, many meanings: A corpus for the prediction and disambiguation of
emoji sense. Expert Systems with Applications, 198, 116862. https://doi.org/10.1016/J.ESWA.2022.116862
Sun, X., Li, H., Sun, G., & Zhu, M. (2020). Fine-grained emoji sentiment analysis based on attributes of Twitter users.
Proceedings - 2020 IEEE International Conference on Smart Cloud, SmartCloud 2020, 134–139.
https://doi.org/10.1109/SMARTCLOUD49737.2020.00033
McShane, L., Pancer, E., Poole, M., & Deng, Q. (2021). Emoji, Playfulness, and Brand Engagement on Twitter. Journal of
Interactive Marketing, 53, 96–110. https://doi.org/10.1016/J.INTMAR.2020.06.002
Ko, E. (Emily), Kim, D., & Kim, G. (2022). Influence of emojis on user engagement in brand-related user generated content.
Computers in Human Behavior, 136, 107387. https://doi.org/10.1016/J.CHB.2022.107387
Rahmanti, A. R., Chien, C.-H., Nursetyo, A. A., Husnayain, A., Wiratama, B. S., Fuad, A., Yang, H.-C., & Li, Y.-C. J. (2022).
Social media sentiment analysis to monitor the performance of vaccination coverage during the early phase of the national
COVID-19 vaccine rollout. Computer Methods and Programs in Biomedicine, 221, 106838.
https://doi.org/10.1016/J.CMPB.2022.106838
Xu, Q. A., Chang, V., & Jayne, C. (2022). A systematic review of social media-based sentiment analysis: Emerging trends and
challenges. Decision Analytics Journal, 3, 100073. https://doi.org/10.1016/J.DAJOUR.2022.100073
Qian, C., Mathur, N., Zakaria, N. H., Arora, R., Gupta, V., & Ali, M. (2022). Understanding public opinions on social media for
financial sentiment analysis using AI-based techniques. Information Processing & Management, 59(6), 103098.
https://doi.org/10.1016/J.IPM.2022.103098
Hiriyannaiah, S., Srinivas, A. M. D., Shetty, G. K., G.M., S., & Srinivasa, K. G. (2020). A computationally intelligent agent for
detecting fake news using generative adversarial networks. Hybrid Computational Intelligence, 69–96.
https://doi.org/10.1016/B978-0-12-818699-2.00004-4
Yi, J., Nasukawa, T., Bunescu, R., & Niblack, W. (n.d.). Sentiment Analyzer: Extracting Sentiments about a Given Topic using
Natural Language Processing Techniques. Retrieved August 26, 2021, from www.cnet.com.
Al-Qudah, D. A., Al-Zoubi, A. M., Castillo-Valdivieso, P. A., & Faris, H. (2020). Sentiment analysis for e-payment service
providers using evolutionary extreme gradient boosting. IEEE Access, 8, 189930–189944.
https://doi.org/10.1109/ACCESS.2020.3032216
Catelli, R., Pelosi, S., Comito, C., Pizzuti, C., & Esposito, M. (2023). Lexicon-based sentiment analysis to detect opinions and
attitude towards COVID-19 vaccines on Twitter in Italy. Computers in Biology and Medicine, 158, 106876.
https://doi.org/10.1016/J.COMPBIOMED.2023.106876
Sarkar, D. (2019). Natural Language Processing Basics. Text Analytics with Python, 1–68. https://doi.org/10.1007/978-1-4842-
-1_1
Drus, Z., & Khalid, H. (2019). Sentiment analysis in social media and its application: Systematic literature review. Procedia
Computer Science, 161, 707–714. https://doi.org/10.1016/j.procs.2019.11.174
Bhowmik, N. R., Arifuzzaman, M., & Mondal, M. R. H. (2022). Sentiment analysis on Bangla text using extended lexicon
dictionary and deep learning algorithms. Array, 13, 100123. https://doi.org/10.1016/J.ARRAY.2021.100123
El Rahman, S. A., Alotaibi, F. A., & Alshehri, W. A. (2019). Sentiment Analysis of Twitter Data. 2019 International Conference
on Computer and Information Sciences, ICCIS 2019. https://doi.org/10.1109/ICCISCI.2019.8716464
Oyewola, D. O., Oladimeji, L. A., Julius, S. O., Kachalla, L. B., & Dada, E. G. (2023). Optimizing sentiment analysis of Nigerian
presidential election using two-stage residual long short term memory. Heliyon, 9(4), e14836.
https://doi.org/10.1016/J.HELIYON.2023.E14836
Suhartono, D., Purwandari, K., Jeremy, N. H., Philip, S., Arisaputra, P., & Parmonangan, I. H. (2023). Deep neural networks and
weighted word embeddings for sentiment analysis of drug product reviews. Procedia Computer Science, 216, 664–671.
https://doi.org/10.1016/J.PROCS.2022.12.182
Kaur, H., Ahsaan, S. U., Alankar, B., & Chang, V. (2021). A Proposed Sentiment Analysis Deep Learning Algorithm for
Analyzing COVID-19 Tweets. Information Systems Frontiers, 1–13. https://doi.org/10.1007/s10796-021-10135-7
Pröllochs, N., Feuerriegel, S., Lutz, B., & Neumann, D. (2020). Negation scope detection for sentiment analysis: A reinforcement
learning framework for replicating human interpretations. Undefined, 536, 205–221. https://doi.org/10.1016/J.INS.2020.05.022
Xu, Z., Fu, Y., Chen, X., Rao, Y., Xie, H., Wang, F. L., & Peng, Y. (2018). Sentiment classification via supplementary
information modeling. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 10987 LNCS, 54–62. https://doi.org/10.1007/978-3-319-96890-2_5
Ullah, M. A., Marium, S. M., Begum, S. A., & Dipa, N. S. (2020). An algorithm and method for sentiment analysis using the
text and emoticon. ICT Express, xxxx, 10–13. https://doi.org/10.1016/j.icte.2020.07.003
Mukherjee, P., Badr, Y., Doppalapudi, S., Srinivasan, S. M., Sangwan, R. S., & Sharma, R. (2021). Effect of Negation in
Sentences on Sentiment Analysis and Polarity Detection. Procedia Computer Science, 185, 370–379.
https://doi.org/10.1016/J.PROCS.2021.05.038
Colón-Ruiz, C., & Segura-Bedmar, I. (2020). Comparing deep learning architectures for sentiment analysis on drug reviews.
Journal of Biomedical Informatics, 110, 103539. https://doi.org/10.1016/J.JBI.2020.103539
Chakraborty, K., Bhattacharyya, S., Bag, R., & Hassanien, A. A. (2019). Sentiment Analysis on a Set of Movie Reviews Using
Deep Learning Techniques. Social Network Analytics, 127–147. https://doi.org/10.1016/B978-0-12-815458-8.00007-4
Muhammad, P. F., Kusumaningrum, R., & Wibowo, A. (2021). Sentiment Analysis Using Word2vec and Long Short-Term
Memory (LSTM) for Indonesian Hotel Reviews. Procedia Computer Science, 179, 728–735.
https://doi.org/10.1016/j.procs.2021.01.061
Naseem, U., Razzak, I., Musial, K., & Imran, M. (2020). Transformer based Deep Intelligent Contextual Embedding for Twitter
sentiment analysis. Future Generation Computer Systems, 113, 58–69. https://doi.org/10.1016/J.FUTURE.2020.06.050
Shobana, J., & Murali, M. (2021). An efficient sentiment analysis methodology based on long short-term memory networks.
Complex & Intelligent Systems, 7(5), 2485–2501. https://doi.org/10.1007/s40747-021-00436-4
Bangyal, W. H., Qasim, R., Rehman, N. U., Ahmad, Z., Dar, H., Rukhsar, L., Aman, Z., & Ahmad, J. (2021). Detection of Fake
News Text Classification on COVID-19 Using Deep Learning Approaches. Computational and Mathematical Methods in
Medicine, 2021. https://doi.org/10.1155/2021/5514220
Sunitha, D., Patra, R. K., Babu, N. V., Suresh, A., & Gupta, S. C. (2022). Twitter sentiment analysis using ensemble based deep
learning model towards COVID-19 in India and European countries. Pattern Recognition Letters, 158, 164–170.
https://doi.org/10.1016/J.PATREC.2022.04.027
Ankita, Rani, S., Bashir, A. K., Alhudhaif, A., Koundal, D., & Gunduz, E. S. (2022). An efficient CNN-LSTM model for
sentiment detection in #BlackLivesMatter. Expert Systems with Applications, 193, 116256.
https://doi.org/10.1016/J.ESWA.2021.116256
Scheffler, T., Brandt, L., Fuente, M. de la, & Nenchev, I. (2022). The processing of emoji-word substitutions: A self-pacedreading study. Computers in Human Behavior, 127, 107076. https://doi.org/10.1016/J.CHB.2021.107076
Fernández-Gavilanes, M., Costa-Montenegro, E., García-Méndez, S., González-Castaño, F. J., & Juncal-Martínez, J. (2021).
Evaluation of online emoji description resources for sentiment analysis purposes. Expert Systems with Applications, 184,
https://doi.org/10.1016/J.ESWA.2021.115279
Redmond, M., Salesi, S., & Cosma, G. (2017). A Novel Approach Based on an Extended Cuckoo Search Algorithm for the
Classification of Tweets which contain Emoticon and Emoji.
Sharif, W., Samsudin, N. A., Deris, M. M., & Naseem, R. (2017). Effect of negation in sentiment analysis. 2016 6th International
Conference on Innovative Computing Technology, INTECH 2016, 718–723. https://doi.org/10.1109/INTECH.2016.7845119
Basiri, M. E., Nemati, S., Abdar, M., Cambria, E., & Acharya, U. R. (2021). ABCDM: An Attention-based Bidirectional CNNRNN Deep Model for sentiment analysis. Future Generation Computer Systems, 115, 279–294.
https://doi.org/10.1016/j.future.2020.08.005
Usama, M., Ahmad, B., Song, E., Hossain, M. S., Alrashoud, M., & Muhammad, G. (2020). Attention-based sentiment analysis
using convolutional and recurrent neural network. Future Generation Computer Systems, 113, 571–578.
https://doi.org/10.1016/j.future.2020.07.022
Sharma, Y., Agrawal, G., Jain, P., & Kumar, T. (2018). Vector representation of words for sentiment analysis using GloVe. ICCT
- International Conference on Intelligent Communication and Computational Techniques, 2018-January, 279–284.
https://doi.org/10.1109/INTELCCT.2017.8324059
Wu, R., Chen, J., Lu Wang, C., & Zhou, L. (2022). The influence of emoji meaning multipleness on perceived online review
helpfulness: The mediating role of processing fluency. Journal of Business Research, 141, 299–307.
https://doi.org/10.1016/J.JBUSRES.2021.12.037
Mansour, R., Hady, M. F. A., Hosam, E., Amr, H., & Ashour, A. (2015). Feature selection for twitter sentiment analysis: An
experimental study. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 9042, 92–103. https://doi.org/10.1007/978-3-319-18117-2_7/COVER/
Chandra, P. A., Singh Rajpoot, D., & Saraswat, M. (2017). Twitter sentiment analysis using hybrid cuckoo search method.
Information Processing and Management, 53(4), 764–779. https://doi.org/10.1016/j.ipm.2017.02.004
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mdurvwa Usiju Ijairi, Mohammed Abdullahi, Ibrahim Hayatu Hassan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.