SENTIMENT CLASSIFICATION OF TWEETS WITH EXPLICIT WORD NEGATIONS AND EMOJI USING DEEP LEARNING

Authors

  • Mdurvwa Usiju Ijairi Department of Computer Science, Ahmadu Bello University, Zaria, Nigeria
  • Mohammed Abdullahi Department of Computer Science, Ahmadu Bello University, Zaria, Nigeria
  • Ibrahim Hayatu Hassan Institute for Agricultural, Ahmadu Bello University, Zaria, Nigeria.

DOI:

https://doi.org/10.15282/ijsecs.9.2.2023.3.0114

Keywords:

Sentiment Analysis, Long Short-Term Memory, Word Embedding, Emoji

Abstract

The widespread use of social media platforms such as Twitter, Instagram, Facebook, and LinkedIn have had a huge impact on daily human interactions and decision-making. Owing to Twitter's widespread acceptance, users can express their opinions/sentiments on nearly any issue, ranging from public opinion, a product/service, to even a specific group of people. Sharing these opinions/sentiments results in a massive production of user content known as tweets, which can be assessed to generate new knowledge. Corporate insights, government policy formation, decision-making, and brand identity monitoring all benefit from analyzing the opinions/sentiments expressed in these tweets. Even though several techniques have been created to analyze user sentiments from tweets, social media engagements include negation words and emoji elements that, if not properly pre-processed, would result in misclassification. The majority of available pre-processing techniques rely on clean data and machine learning algorithms to annotate sentiment in unlabeled texts. In this study, we propose a text pre-processing approach that takes into consideration negation words and emoji characteristics in text data by translating these features into single contextual words in tweets to minimize context loss. The proposed preprocessor was evaluated on benchmark Twitter datasets using four deep learning algorithms: Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and Artificial Neural Network (ANN). The results showed that LSTM performed better than the approaches already discussed in the literature, with an accuracy of 96.36%, 88.41%, and 95.39%. The findings also suggest that pre-processing information like emoji and explicit word negations aids in the preservation of sentimental information. This appears to be the first study to classify sentiments in tweets while accounting for both explicit word negation conversion and emoji translation.

References

Hassonah, M. A., Al-Sayyed, R., Rodan, A., Al-Zoubi, A. M., Aljarah, I., & Faris, H. (2020). An efficient hybrid filter and

evolutionary wrapper approach for sentiment analysis of various topics on Twitter. Knowledge-Based Systems, 192, 105353.

https://doi.org/10.1016/j.knosys.2019.105353

Appel, G., Grewal, L., Hadi, R., & Stephen, A. T. (2020). The future of social media in marketing. Journal of the Academy of

Marketing Science, 48(1), 79–95. https://doi.org/10.1007/s11747-019-00695-1

Dwivedi, Y. K., Ismagilova, E., Hughes, D. L., Carlson, J., Filieri, R., Jacobson, J., Jain, V., Karjaluoto, H., Kefi, H., Krishen,

A. S., Kumar, V., Rahman, M. M., Raman, R., Rauschnabel, P. A., Rowley, J., Salo, J., Tran, G. A., & Wang, Y. (2021). Setting

the future of digital and social media marketing research: Perspectives and research propositions. International Journal of

Information Management, 59. https://doi.org/10.1016/j.ijinfomgt.2020.102168

Singh, P. K., & Paul, S. (2021). Deep Learning Approach for Negation Handling in Sentiment Analysis. IEEE Access, 9, 102579–

https://doi.org/10.1109/ACCESS.2021.3095412

Liu, C., Fang, F., Lin, X., Cai, T., Tan, X., Liu, J., & Lu, X. (2021). Improving sentiment analysis accuracy with emoji embedding.

Journal of Safety Science and Resilience, 2(4), 246–252. https://doi.org/10.1016/J.JNLSSR.2021.10.003

Chen, X., Rao, Y., Xie, H., Wang, F. L., Zhao, Y., & Yin, J. (2019). Sentiment Classification Using Negative and Intensive

Sentiment Supplement Information. Data Science and Engineering 2019 4:2, 4(2), 109–118. https://doi.org/10.1007/S41019-

-0094-8

Shardlow, M., Gerber, L., & Nawaz, R. (2022). One emoji, many meanings: A corpus for the prediction and disambiguation of

emoji sense. Expert Systems with Applications, 198, 116862. https://doi.org/10.1016/J.ESWA.2022.116862

Sun, X., Li, H., Sun, G., & Zhu, M. (2020). Fine-grained emoji sentiment analysis based on attributes of Twitter users.

Proceedings - 2020 IEEE International Conference on Smart Cloud, SmartCloud 2020, 134–139.

https://doi.org/10.1109/SMARTCLOUD49737.2020.00033

McShane, L., Pancer, E., Poole, M., & Deng, Q. (2021). Emoji, Playfulness, and Brand Engagement on Twitter. Journal of

Interactive Marketing, 53, 96–110. https://doi.org/10.1016/J.INTMAR.2020.06.002

Ko, E. (Emily), Kim, D., & Kim, G. (2022). Influence of emojis on user engagement in brand-related user generated content.

Computers in Human Behavior, 136, 107387. https://doi.org/10.1016/J.CHB.2022.107387

Rahmanti, A. R., Chien, C.-H., Nursetyo, A. A., Husnayain, A., Wiratama, B. S., Fuad, A., Yang, H.-C., & Li, Y.-C. J. (2022).

Social media sentiment analysis to monitor the performance of vaccination coverage during the early phase of the national

COVID-19 vaccine rollout. Computer Methods and Programs in Biomedicine, 221, 106838.

https://doi.org/10.1016/J.CMPB.2022.106838

Xu, Q. A., Chang, V., & Jayne, C. (2022). A systematic review of social media-based sentiment analysis: Emerging trends and

challenges. Decision Analytics Journal, 3, 100073. https://doi.org/10.1016/J.DAJOUR.2022.100073

Qian, C., Mathur, N., Zakaria, N. H., Arora, R., Gupta, V., & Ali, M. (2022). Understanding public opinions on social media for

financial sentiment analysis using AI-based techniques. Information Processing & Management, 59(6), 103098.

https://doi.org/10.1016/J.IPM.2022.103098

Hiriyannaiah, S., Srinivas, A. M. D., Shetty, G. K., G.M., S., & Srinivasa, K. G. (2020). A computationally intelligent agent for

detecting fake news using generative adversarial networks. Hybrid Computational Intelligence, 69–96.

https://doi.org/10.1016/B978-0-12-818699-2.00004-4

Yi, J., Nasukawa, T., Bunescu, R., & Niblack, W. (n.d.). Sentiment Analyzer: Extracting Sentiments about a Given Topic using

Natural Language Processing Techniques. Retrieved August 26, 2021, from www.cnet.com.

Al-Qudah, D. A., Al-Zoubi, A. M., Castillo-Valdivieso, P. A., & Faris, H. (2020). Sentiment analysis for e-payment service

providers using evolutionary extreme gradient boosting. IEEE Access, 8, 189930–189944.

https://doi.org/10.1109/ACCESS.2020.3032216

Catelli, R., Pelosi, S., Comito, C., Pizzuti, C., & Esposito, M. (2023). Lexicon-based sentiment analysis to detect opinions and

attitude towards COVID-19 vaccines on Twitter in Italy. Computers in Biology and Medicine, 158, 106876.

https://doi.org/10.1016/J.COMPBIOMED.2023.106876

Sarkar, D. (2019). Natural Language Processing Basics. Text Analytics with Python, 1–68. https://doi.org/10.1007/978-1-4842-

-1_1

Drus, Z., & Khalid, H. (2019). Sentiment analysis in social media and its application: Systematic literature review. Procedia

Computer Science, 161, 707–714. https://doi.org/10.1016/j.procs.2019.11.174

Bhowmik, N. R., Arifuzzaman, M., & Mondal, M. R. H. (2022). Sentiment analysis on Bangla text using extended lexicon

dictionary and deep learning algorithms. Array, 13, 100123. https://doi.org/10.1016/J.ARRAY.2021.100123

El Rahman, S. A., Alotaibi, F. A., & Alshehri, W. A. (2019). Sentiment Analysis of Twitter Data. 2019 International Conference

on Computer and Information Sciences, ICCIS 2019. https://doi.org/10.1109/ICCISCI.2019.8716464

Oyewola, D. O., Oladimeji, L. A., Julius, S. O., Kachalla, L. B., & Dada, E. G. (2023). Optimizing sentiment analysis of Nigerian

presidential election using two-stage residual long short term memory. Heliyon, 9(4), e14836.

https://doi.org/10.1016/J.HELIYON.2023.E14836

Suhartono, D., Purwandari, K., Jeremy, N. H., Philip, S., Arisaputra, P., & Parmonangan, I. H. (2023). Deep neural networks and

weighted word embeddings for sentiment analysis of drug product reviews. Procedia Computer Science, 216, 664–671.

https://doi.org/10.1016/J.PROCS.2022.12.182

Kaur, H., Ahsaan, S. U., Alankar, B., & Chang, V. (2021). A Proposed Sentiment Analysis Deep Learning Algorithm for

Analyzing COVID-19 Tweets. Information Systems Frontiers, 1–13. https://doi.org/10.1007/s10796-021-10135-7

Pröllochs, N., Feuerriegel, S., Lutz, B., & Neumann, D. (2020). Negation scope detection for sentiment analysis: A reinforcement

learning framework for replicating human interpretations. Undefined, 536, 205–221. https://doi.org/10.1016/J.INS.2020.05.022

Xu, Z., Fu, Y., Chen, X., Rao, Y., Xie, H., Wang, F. L., & Peng, Y. (2018). Sentiment classification via supplementary

information modeling. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 10987 LNCS, 54–62. https://doi.org/10.1007/978-3-319-96890-2_5

Ullah, M. A., Marium, S. M., Begum, S. A., & Dipa, N. S. (2020). An algorithm and method for sentiment analysis using the

text and emoticon. ICT Express, xxxx, 10–13. https://doi.org/10.1016/j.icte.2020.07.003

Mukherjee, P., Badr, Y., Doppalapudi, S., Srinivasan, S. M., Sangwan, R. S., & Sharma, R. (2021). Effect of Negation in

Sentences on Sentiment Analysis and Polarity Detection. Procedia Computer Science, 185, 370–379.

https://doi.org/10.1016/J.PROCS.2021.05.038

Colón-Ruiz, C., & Segura-Bedmar, I. (2020). Comparing deep learning architectures for sentiment analysis on drug reviews.

Journal of Biomedical Informatics, 110, 103539. https://doi.org/10.1016/J.JBI.2020.103539

Chakraborty, K., Bhattacharyya, S., Bag, R., & Hassanien, A. A. (2019). Sentiment Analysis on a Set of Movie Reviews Using

Deep Learning Techniques. Social Network Analytics, 127–147. https://doi.org/10.1016/B978-0-12-815458-8.00007-4

Muhammad, P. F., Kusumaningrum, R., & Wibowo, A. (2021). Sentiment Analysis Using Word2vec and Long Short-Term

Memory (LSTM) for Indonesian Hotel Reviews. Procedia Computer Science, 179, 728–735.

https://doi.org/10.1016/j.procs.2021.01.061

Naseem, U., Razzak, I., Musial, K., & Imran, M. (2020). Transformer based Deep Intelligent Contextual Embedding for Twitter

sentiment analysis. Future Generation Computer Systems, 113, 58–69. https://doi.org/10.1016/J.FUTURE.2020.06.050

Shobana, J., & Murali, M. (2021). An efficient sentiment analysis methodology based on long short-term memory networks.

Complex & Intelligent Systems, 7(5), 2485–2501. https://doi.org/10.1007/s40747-021-00436-4

Bangyal, W. H., Qasim, R., Rehman, N. U., Ahmad, Z., Dar, H., Rukhsar, L., Aman, Z., & Ahmad, J. (2021). Detection of Fake

News Text Classification on COVID-19 Using Deep Learning Approaches. Computational and Mathematical Methods in

Medicine, 2021. https://doi.org/10.1155/2021/5514220

Sunitha, D., Patra, R. K., Babu, N. V., Suresh, A., & Gupta, S. C. (2022). Twitter sentiment analysis using ensemble based deep

learning model towards COVID-19 in India and European countries. Pattern Recognition Letters, 158, 164–170.

https://doi.org/10.1016/J.PATREC.2022.04.027

Ankita, Rani, S., Bashir, A. K., Alhudhaif, A., Koundal, D., & Gunduz, E. S. (2022). An efficient CNN-LSTM model for

sentiment detection in #BlackLivesMatter. Expert Systems with Applications, 193, 116256.

https://doi.org/10.1016/J.ESWA.2021.116256

Scheffler, T., Brandt, L., Fuente, M. de la, & Nenchev, I. (2022). The processing of emoji-word substitutions: A self-pacedreading study. Computers in Human Behavior, 127, 107076. https://doi.org/10.1016/J.CHB.2021.107076

Fernández-Gavilanes, M., Costa-Montenegro, E., García-Méndez, S., González-Castaño, F. J., & Juncal-Martínez, J. (2021).

Evaluation of online emoji description resources for sentiment analysis purposes. Expert Systems with Applications, 184,

https://doi.org/10.1016/J.ESWA.2021.115279

Redmond, M., Salesi, S., & Cosma, G. (2017). A Novel Approach Based on an Extended Cuckoo Search Algorithm for the

Classification of Tweets which contain Emoticon and Emoji.

Sharif, W., Samsudin, N. A., Deris, M. M., & Naseem, R. (2017). Effect of negation in sentiment analysis. 2016 6th International

Conference on Innovative Computing Technology, INTECH 2016, 718–723. https://doi.org/10.1109/INTECH.2016.7845119

Basiri, M. E., Nemati, S., Abdar, M., Cambria, E., & Acharya, U. R. (2021). ABCDM: An Attention-based Bidirectional CNNRNN Deep Model for sentiment analysis. Future Generation Computer Systems, 115, 279–294.

https://doi.org/10.1016/j.future.2020.08.005

Usama, M., Ahmad, B., Song, E., Hossain, M. S., Alrashoud, M., & Muhammad, G. (2020). Attention-based sentiment analysis

using convolutional and recurrent neural network. Future Generation Computer Systems, 113, 571–578.

https://doi.org/10.1016/j.future.2020.07.022

Sharma, Y., Agrawal, G., Jain, P., & Kumar, T. (2018). Vector representation of words for sentiment analysis using GloVe. ICCT

- International Conference on Intelligent Communication and Computational Techniques, 2018-January, 279–284.

https://doi.org/10.1109/INTELCCT.2017.8324059

Wu, R., Chen, J., Lu Wang, C., & Zhou, L. (2022). The influence of emoji meaning multipleness on perceived online review

helpfulness: The mediating role of processing fluency. Journal of Business Research, 141, 299–307.

https://doi.org/10.1016/J.JBUSRES.2021.12.037

Mansour, R., Hady, M. F. A., Hosam, E., Amr, H., & Ashour, A. (2015). Feature selection for twitter sentiment analysis: An

experimental study. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 9042, 92–103. https://doi.org/10.1007/978-3-319-18117-2_7/COVER/

Chandra, P. A., Singh Rajpoot, D., & Saraswat, M. (2017). Twitter sentiment analysis using hybrid cuckoo search method.

Information Processing and Management, 53(4), 764–779. https://doi.org/10.1016/j.ipm.2017.02.004

Published

2023-07-20

How to Cite

Ijairi, M. U., Abdullahi, M., & Hassan, I. H. (2023). SENTIMENT CLASSIFICATION OF TWEETS WITH EXPLICIT WORD NEGATIONS AND EMOJI USING DEEP LEARNING. International Journal of Software Engineering and Computer Systems, 9(2), 93–104. https://doi.org/10.15282/ijsecs.9.2.2023.3.0114