Literature Review of Optimization Technique for Chatter Suppression in Machining

Authors

  • Ahmad Razlan Yusoff Faculty of Manufacturing Engineering Universiti Malaysia Pahang, 26600 Pekan, Pahang
  • Mohamed Reza Zalani Mohamed Suffian Faculty of Mechanical Engineering Universiti Malaysia Pahang 26600 Pekan, Pahang, Malaysia
  • Mohd Yusof Taib Faculty of Mechanical Engineering Universiti Malaysia Pahang 26600 Pekan, Pahang, Malaysia

DOI:

https://doi.org/10.15282/jmes.1.2011.5.0005%20%20

Keywords:

Chatter; optimization; artificial intelligence; suppression.

Abstract

Chatter produces a poor surface finish, high tool wear, and can even damage machine tools because of the regenerative effect, the loss of contact effect, and the mode coupling effect. Various research works have investigated the suppression of chatter by either passive or active methods, such as by applying absorbers, damping, varied speeds and other alternatives. In this paper, it can be observed that for chatter suppression, optimization focuses on spindle design, tool path, cutting process, and variable pitch. Various algorithms can be applied in the optimization of machining problems; however, Differential Evolution is the most appropriate for use in chatter suppression, being less time consuming, locally optimal, and more robust than both Genetic Algorithms, despite their wide applications, and Sequential Quadratic Programming, which is a famous conventional algorithm

References

Abburi, N., & U. Dixit, U. (2007). Multi-objective optimization of multipass turning processes. The International Journal of Advanced Manufacturing Technology, 32(9), 902-910.

Abuelnaga, A. M., & El-Dardiry, M. A. (1984). Optimization Methods for Metal Cutting. International Journal of Machine Tool Design and Research, 24(1), 11-18.

Agapiou, J. S. (1992). Optimization of Multistage machining Systems, Part 1:Mathematical Solution. Journal of engineering for industry, 114, 524-531.

Aggarwal, A., & Singh, H. (2005). Optmization of Machining Technique-A retrospective and literature review. Sadhand, 30(6), 699-711.

Altintas, Y., Engin, S., & Budak, E. (1999). Analytical stability prediction and design of variable pitch cutters. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 121(2), 173-178.

Ariffin, M. K. A., Sims, N. D., & Worden, K. (2004). Genetic optimisation of machine tool paths. 6th International Conference on Adaptive Computing In Design And Manufacture In ‘Adaptive Computing in Design and Manufacture VI, Bristol., Springer-Verlag

Armarego, E. J. A., Smith, A. J. R., & Wang, J. (1993). Constrained Optimization Strategies and CAM Software for Single-pass Peripheral Milling. International Journal of Production Research, 31(9), 2139-2160.

Baek, D. K., Ko, T. J., & Kim, H. S. (2001). Optimization of feedrate in a face milling operation using a surface roughness model. International Journal of Machine Tools and Manufacture, 41(3), 451-462.

Bajic, D., Lela, B., & Zivkovic, D. (2008). Modeling of machined surface roughness and optimization of cutting parameters in face milling. Metalurgija, 47(4), 331-334.

Balakrishnan, P., & DeVries, M. F. (1985). Sequential estimation of machinibility parameters for adaptive optimization of machinibility data base systems. Journal of Engineering for Industry, 107, 159-166.

Baskar, N., Asokan, P., Prabhaharan, G., & Saravanan, R. (2005). Optimization of machining parameters for milling operations using non-conventional methods. The International Journal of Advanced Manufacturing Technology, 25(11), 1078-1088.

Baskar, N., Asokan, P., Saravanan, R., & Prabhaharan, G. (2006). Selection of optimal machining parameters for multi-tool milling operations using a memetic algorithm. Journal of Materials Processing Techology, 174(1), 239-249.

Budak, E. (2000). Improving productivity and part quality in milling of titanium based impellers by chatter suppression and force control. CIRP Annals - Manufacturing Technology, 49(1), 31-36.

Budak, E. (2003). An analytical design method for milling cutters with non-constant pitch to increase stability, Part 1: Theory and Part 2: Application. Journal of Manufacturing Science and Engineering, 125, 29-38.

Budak, E., & Tekeli, A. (2005). Maximizing chatter free material removal rate in milling through optimal selection of axial and radial depth of cut. CIRP Annals - Manufacturing Technology, 54(1), 353-356.

By Chen, J. S., Huang, Y. K., & Chen, M. S. (2005). Feedrate optimization and tool profile modification for the high-efficiency ball-end milling process. International Journal of Machine Tools and Manufacture, 45(9), 1070-1076.

Chang, C. K., & Lu, H. (2007). Design optimization of cutting parameters for side milling operations with multiple performance characteristics. The International Journal of Advanced Manufacturing Technology, 32(1), 18-26.

Chua, M. S., Loh, H. T., Wong, Y. S., & Rahman, M. (1991). Optimization of cutting conditions for multi-pass turning operations using sequential quadratic programming. Journal of Materials Processing Technology, 28(1-2), 253-262.

Cus, F., & Balic, J. (2003). Optimization of cutting process by GA approach. Robotics and Computer-Integrated Manufacturing, 19(1-2), 113-121.

El-Mounayri, H., Kishawy, H., & Briceno, J. (2005). Optimization of CNC ball end milling: a neural network-based model. Journal of Materials Processing Technology, 166(1): 50-62.

Fazelinia, H., & Olgac, N. (2006). Optimum Consitions for variable Pitch Milling. ASME International Mechanical Engineering Congress and Exposition. Illlinois, pp. 1-8.

Fletcher, R. (1987). Practical Methods of Optimization. West Sussex: John Wilet & Sons.

Ghani, J. A., Choudhury, I. A., & Hassan, H. H. (2004). Application of Taguchi method in the optimization of end milling parameters. Journal of Materials Processing Technology, 145(1), 84-92.

Jha, N. K. (1990). A discrete data base multiple objective optimization of milling operation through geometric programming. Journal of Engineering for Industry, 112, 368-374.

Juan, H., Yu, S. F., & Lee, B. Y. (2003). The optimal cutting-parameter selection of production cost in HSM for SKD61 tool steels. International Journal of Machine Tools and Manufacture, 43(7), 679-686.

Kim, K. K., Kang, M. C., Kim, J. S., Jung, Y. H., & Kim, N. K. (2002). A study on the precision machinability of ball end milling by cutting speed optimization. Journal of Materials Processing Technology, 130, 357-362.

Koulamas, C. (1991). Simultaneous determination of optimal machining conditions and tool replacement policies in constrained machining economics problems by geometric programming. International Journal of Production Research, 29(12), 2407-2421.

Krishna, A. (2007). Selection of optimal conditions in the surface grinding process using a differential evolution approach. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(7), 1185-1192.

Kurdi, M. H. (2005). Robust multicriteria optimization of surface location error and material removal rate in high speed milling under uncertainty. Department of Mechanical and Aerospace Engineering, University of florida.

Kurdi, M. H., Schmitz, T. L., Haftka, R. T., & Mann, B. P. (2004). Simultaneous optimization of material removal rate and part accuracy in high speed milling. ASME International Mechanical Engineering Congress and Exposition (IMECE), pp. 1001-1009.

Li, H., & Li, X. (2000). Modelling and simulation of chatter in milling using a predictive force model. International Journal of Machine Tools and Manufacture, 40(14), 2047.

Lin, T .R. (2002). Optimisation technique for face milling stainless steel with multiple performance characteristics. The International Journal of Advanced Manufacturing Technology, 19(5), 330-335.

Liu, K. J., & Rouch, K. E. (1991). Optimal passive vibration control of cutting process stability in milling. Journal of Materials Processing Technology, 28(1-2), 285-294.

Maeda, O., Cao, Y., & Altintas, Y. (2005). Expert spindle design system. International Journal of Machine Tools and Manufacture, 45(4-5), 537-548.

Marian Wiercigroch, E. B. (2001). Sources of nonlinearities, chatter generation and suppression in metal cutting. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 359(1781), 663-693.

Mayer, D. G., Kinghorn, B. P., & Archer, A. A. (2005). Differential evolution - an easy and effiecient evolutionary algorithm for model optimisation. Agricultural Systems, 83, 315-328.

Merchant, M. E. (1945). Mechanics of the metal cutting process. ASME Journal of Applied Physics, 16(5), 318-324.

Merdol, D., & Altintas, Y. (2008a). Virtual cutting and optimization of milling operations-Part 1: Process simulation Part 2: Optimization and feedrate scheduling. Journal of Manufacturing Science and Engineering, 130(5), 1004-15.

Merdol, D., & Altintas, Y. (2008b). Virtual cutting and optimization of three-axis milling processes. International Journal of Machine Tools and Manufacture, 48, 1063-1071.

Mukherjee, I., & Ray, P. K. (2006). A review of optimization techniques in metal cutting processes. Computers & Industrial Engineering, 50(1), 15-34.

Nejat, O., & Rifat, S. (2005). A unique methodology for chatter stability mapping in simultaneous machining. Journal of Manufacturing Science and Engineering, 127(4), 791-800.

Oktem, H., Erzurumlu, T., & Erzincanli, F. (2006). Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm. Materials and Design, 27(9), 735-744.

Oktem, H., Erzurumlu, T., & Kurtaran, H. (2005). Application of response surface methodology in the optimization of cutting conditions for surface roughness. Journal of Materials Processing Technology, 170(1-2), 11-16.

Olgac, N., & Sipahi, R. (2007a). Dynamic and stability of variable pitch milling. Journal of Vibration and Control, 13(7), 1031-1043.

Olgac, N., & Sipahi, R. (2007b). Dynamics and stability of variable pitch milling. Journal of Vibration & Control, 13, 1031-1043.

Onwubolu, G. (2005). Optimization of milling operations for the selection of cutting conditions using Tribes. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(10), 761-771.

Parent, L., Songmene, V., & Kenne, J. P. (2007). A generalised model for optimising and end milling operation. Production Planning and Control, 18(4), 319-337.

Pener, K., & Littlefair, G. (2005). Free Search - A Comparative Analysis. Information Science, 172, 173-193.

Price, K. V., Storn, R. M., & Lampinen, J. A. (2005). Differential evolution a practical approach to global optimization. Berlin Heidelberg: Springer.

Saikumar, S., & Shunmugan, M. S. (2008). Parameter selection based on surface finish in high speed finish in high speed end milling using differential evolution. Materials and Manufacturing Processes, 21(4), 341-347.

Savas, V., & Ozay, C. (2007). The optimization of the surface roughness in the process of tangential turn-milling using genetic algorithm. The International Journal of Advanced Manufacturing Technology, 37(3-4), 335-340.

Shirase, K., & Altintas, Y. (1996). Cutting force and dimensional surface error generation in peripheral milling with variable pitch helical end mills. International Journal of Machine Tools & Manufacture, 36(5), 567-584.

Sonmez, A. I., Baykasoglu, A., Dereli, T., & Filiz, I. H. (1999). Dynamic optimization of multipass milling operations via geometric programming. International Journal of Machine Tools and Manufacture, 39(2), 297-320.

Sorby, K., Tonnessen, K., Torjusen, J. E., & Rasch, F. O. (2000). Improving high speed flank milling operations in multi-axis machines. CIRP Annals - Manufacturing Technology, 49(1), 371-374.

Stephenson, D. A., & Agapiou, J. S. (2006). Metal cutting: Theory and practice. Boca Raton: Taylor & Francis Group.

Stoic, A., Kopac, J., & Cukor, G. (2005). Testing of machinability of mould steel 40CrMnMo7 using genetic algorithm. Journal of Materials Processing Technology, 164-165, 1624-1630.

Stori, J. A., & Wright, P. K. (2001). Parameter space decomposition for selection of the axial and radial depth of cut in endmilling. Journal of Manufacturing Science and Engineering, 123(4), 654-664.

Stori, J. A., Wright, P. K., & King, C. (1999). Integration of process simulation in machining parameter optimization. Journal of Manufacturing Science and Engineering, 121(1), 134-143.

Tandon, V., El-Mounayri, H. & Kishawy, H. (2002). NC end milling optimization using evolutionary computation. International Journal of Machine Tools and Manufacture, 42(5), 595-605.

Tekeli, A., & Budak, E. (2007). Maximization of chatter free material removal rate in end milling using analytical methods. Machining Science and Technology, 9(2), 147-167.

Tlusty, J. (2000). Manufacturing process and equipment. New Jersey: Prentice Hall.

Tolouei-Rad, M., & Bidhendi, I. M. (1997). On the optimization of machining parameters for milling operations. International Journal of Machine Tools and Manufacture, 37(1), 1-16.

Tsai, Y. C., & Hsieh, J. M. (2005). An analysis of cutting-edge curves and machining performance in the Inconel 718 machining process. The International Journal of Advanced Manufacturing Technology, 25(3), 248-261.

Tusar, T., Korosec, P., Papa, G., Kilipic, B., & Silc, J. (2007). A comparative study of stochastic optimization methods in electrical motor design. Artificial Intelligence, 27(2), 101-111.

Vivancos, J., Luis, C. J., Costa, L., & Ortiz, J. A. (2004). Optimal machining parameters selection in high speed milling of hardened steels for injection moulds. Journal of Materials Processing Technology, 155-156, 1505-1512.

Walvekar, A. G., & Lambert, B. K. (1970). An Application of Geometric Programming to Machining Variable Selection. International Journal of Production Research, 8(3), 241-245.

Wang, J. (1998). Computer-aided economic optimization of end-milling operations. International Journal of Production Economics, 54(3), 307-320.

Wang, Z. G., Rahman, M., Wong, Y. S., & Sun, J. (2005). Optimization of multi-pass milling using parallel genetic algorithm and parallel genetic simulated annealing. International Journal of Machine Tools and Manufacture, 45(15), 1726-1734.

Weinert, K., Zabel, A., Muller, H., & Kersting, P. (2006). Optimizing of NC tool paths for five-axis milling using evolutionary algorthms on wavelets. Proc. 8th Annual

Conference on Genetic and Evolutionary Computation, Seattle, Washington, pp. 1809-1816.

Westkämper, E., & Schmidt, T. (1998). Computer-assisted manufacturing process optimization with neural networks. Journal of Intelligent Manufacturing, 9(4), 289-294.

Yajun, J., Zhenliang, L., & Minghui, L. (2006). Application of fuzzy and rough sets theory in the optimization of machining parameters for mold milling operations. The International Journal of Advanced Manufacturing Technology, 28(11), 1071-1077.

Yeo, S. H., Rahman, M., & Wong, Y. S. (1995). A tandem approach to selection of machinability data. The International Journal of Advanced Manufacturing Technology, 10(2), 79-86.

Downloads

Published

2011-12-31

How to Cite

[1]
A. . Razlan Yusoff, M. R. . Z. . Mohamed Suffian, and M. . Yusof Taib, “Literature Review of Optimization Technique for Chatter Suppression in Machining”, J. Mech. Eng. Sci., vol. 1, no. 1, pp. 47–61, Dec. 2011.

Issue

Section

Review