Multi-criteria decision-making tools for material selection of natural fibre composites: A review

Authors

  • M. Noryani Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • S.M. Sapuan Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • M.T. Mastura Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

DOI:

https://doi.org/10.15282/jmes.12.1.2018.5.0299

Keywords:

Materials selection; natural fibre composites; multiple-criteria decision-making.

Abstract

Materials selection in manufacturing process is an important stage and should be performed in parallel with selection of manufacturing process. In automotive industry, production of green automotive component could utilize the natural sources such as plant fibres. In recent years, several multi-criteria decision-making (MCDM) techniques are suggested to choose the best materials for particular application. Materials selection tools for natural fibre composites are studied from past researchers with the summary of the advantage and disadvantages. In addition, new optimization approach in materials selection by using statistical analysis such as multiple linear regression (MLR), response
surface methodology (RSM) and Taguchi method (TM) is proposed in this study. The proposed method could evaluate the criteria or attribute in materials selection precisely by analyse the relationship of the parameters, goodness of fit, correlation, analysis of variance (ANOVA), determination of coefficient and the significant criteria in to the desired goal of the design problem.

References

Macuvele D. L. P., Nones J., Matsinhe J., Lima M., Soares C., Fiori M. and Riella H.. Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review. Materials Science and Engineering C. 2017.

Sharabi M., Benayahu D., Benayahu Y., Isaacs J. and Haj-Ali R.. Laminated collagen-fiber bio-composites for soft-tissue bio-mimetics. Composites Science and Technology. 2015;117:268-76.

Chithra S., Kumar S. R. R. S., Chinnaraju K. and Alfin Ashmita F.. A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks. Construction and Building Materials. 2016;114:528–35.

Mansor M. R., Hambali A., Azaman M. D., Sapuan S. M., Zainudin E. S. and Nuraini A. A.. Material selection of thermoplastic matrix for hybrid natural fiber/ glass fiber polymer composites using analytic hierarchy process method. International Symposium on the Analytic Hierarchy Process. 2013.

Loh X. H., Daud M. A. M. and Selamat M. Z.. Mechanical properties of kenaf/polypropylene composite: An investigation. Journal of Mechanical Engineering and Sciences. 2016;10(2):2098–2110.

Islam M. R. and BegM. D. H.. Effects of reinforcing arrangement of kenaf fibres into unsaturated polyester for improved properties. Journal of Mechanical Engineering and Sciences. 2016;10(2):2020–30.

Lee C. H., Sapuan S. M., Lee J. H. and Hassan M. R.. Mechanical properties of kenaf fibre reinforced floreon biocomposites with magnesium hydroxide filler. Journal of Mechanical Engineering and Sciences.2016;10(3):2234–48.

Jumaidin R., Sapuan S. M., Jawaid M., Ishak M. R. and Sahari J.. Effect of seaweed on physical properties of thermoplastic sugar palm starch/agar composites. Journal of Mechanical Engineering and Sciences.2016;10(3):2214–25.

AL-Oqla F. M., Sapuan S. M., Ishak M. R. and Nuraini A. A.. A Model for Evaluating and Determining the Most Appropriate Polymer Matrix Type for Natural Fiber Composites. International Journal of Polymer Analysis and Characterization.2015;20(3):191–205.

Bartosz T. W., Fan M. and Hui D.. Compressive behaviour of natural fibre composite. Composites Part B. 2014;67:183–91.

Ramesh M., Palanikumar K. and Reddy K. H.. Mechanical Property Evaluation of Sisal-Jute-Glass Fiber Reinforced Polyester Composites. Composites Part B. 2012;48:1–9.

Yahaya R., Sapuan S. M., Jawaid M., Leman Z. and Zainudin E. S.. Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf-aramid hybrid laminated composites. Materials and Design. 2015;67:173–79.

Fairuz A. M., Sapuan S. M., Zainudin E. S. and Jaafar C. A.. Effect of filler loading on mechanical properties of pultruded kenaf fibre reinforced vinyl ester composites. Journal of Mechanical Engineering and Sciences. 2016;10(1):1931-42.

Rasyid M. F. A., Salim M. S., Akil H. M. and Ishak Z. A. M.. Optimization of Processing Conditions Via Response Surface Methodology (RSM) of Nonwoven Flax Fibre Reinforced Acrodur Biocomposites. Procedia Chemistry. 2016;19:469–76.

Al-Oqla F. M. and Sapuan S. M.. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production. 2014;66:347–54.

Razali N., Salit S., Jawaid M., Ishak M. R. and Lazim Y.. A Study on Chemical Composition, Physical, Tensile, Morphological, and Thermal Properties of Roselle Fibre:Effect of Fibre Maturity. BioResources. 2015;10(1):1803–24.

Mustafa A., Abdollah M. F., Shuhimi F. F., Ismail N., Amiruddin H. and Umehara N.. Selection and verification of kenaf fibres as an alternative friction material using Weighted Decision Matrix method. Materials and Design. 2015;67:577–82.

Bahrani F., Safari A., Vojdani M. and Karampoor G.. Comparison of Hardness and Surface Roughness of Two Denture bases Polymerized by Different Methods. World Journal Od Dentistry. 2012;3(2):171–76.

Tezara C., Siregar J. P., Lim H. Y., Fauzi F. A., Yazdi M. H., Moey L. K. and Lim J. W.. Factors that affect the mechanical properties of kenaf fiber reinforced polymer: A review. Journal of Mechanical Engineering and Sciences. 2016;10(2):2159–75.

Al-Oqla F. M. and Salit M. S.. Natural Fiber Composites in Materials Selection for Natural Fiber Composites, 1st ed., Cambridge, USA: Woodhead Publishing, Elsevier. 2017:23–45.

Al-Oqla F. M., Sapuan S. M., Anwer T., Jawaid M. and Hoque M. E.. Natural fiber reinforced conductive polymer composites as functional materials: A review. Synthetic Metals. 2015;206:42–54.

Ismail A. E. and Aziz M. A. C. A.. Tensile strength of woven yarn kenaf fiber reinforced polyester composites. Journal of Mechanical Engineering and Sciences. 2015;9:1695–1704.

Tzeng G. H and Huang J. J.. Multiple Attribute Decision Making Methods and Applications. 2011.

Mastura M. T., Sapuan S. M. and Mansor M. R.. A framework for prioritizing customer requirements in product design: Incorporation of FAHP with AHP. Journal of Mechanical Engineering and Sciences. 2015;9:1655–70.

Das D., Bhattacharya S. and Sarkar B.. Decision-based design-driven material selection: A normative-prescriptive approach for simultaneous selection of material and geometric variables in gear design. Materials and Design. 2016;92:787–93.

Al-Oqla F. M. and Salit M. S.. Materials Selection in Materials Selection for Natural Fiber Composites, 1st ed., Cambridge, USA: Woodhead Publishing, Elsevier. 2017:49–68.

Tramarico C. L., Mizuno D., Antonio V., Salomon P., Augusto F. and Marins S.. Analytic Hierarchy Process and Supply Chain Management : a bibliometric study. 2015;55:441–50.

Mardani A., Jusoh A., Nor K., Khalifah Z. and Valipour A.. Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014. Economic Research Ekonomska Istrazivanja. 2015;28(1):516–71.

Saaty T. L.. Decision making with the Analytic Hierarchy Process. International Journal of Services Science. 2008;1(1):83–98.

Hambali A., Sapuan S. M., Ismail N. and Nukman Y.. Material selection of polymeric composite automotive bumper beam using analytical hierarchy process. Journal Cent South University Technology. 2010;17:244–56.

Mayyas A., Shen Q., Mayyas A., Abdelhamid M., Shan D., Qattawi A. and Omar M.. Using Quality Function Deployment and Analytical Hierarchy Process for material selection of Body-In-White. Materials and Design. 2011;32(5):2771–82.

Mansor M. R., Sapuan S. M., Zainudin E. S., Nuraini A. A. and Hambali A.. Hybrid natural and glass fibers reinforced polymer composites material selection using Analytical Hierarchy Process for automotive brake lever design. Materials and Design. 2013;51:484–92.

Mansor M. R., Sapuan S. M., Zainudin E. S., Nuraini A. A. and Hambali A.. Conceptual design of kenaf fiber polymer composite automotive parking brake lever using integrated TRIZ – Morphological Chart – Analytic Hierarchy Process method. Materials and Design. 2014;54:473–82.

Sapuan S. M. A conceptual design of the concurrent engineering design system for polymeric-based composite automotive pedals. American Journal of Applied Sciences. 2005;2(2):514–525.

Hambali A., Sapuan S. M., Rahim A. S., Ismail N. and Nukman Y.. Concurrent Decisions on Design Concept and Material Using Analytical Hierarchy Process at the Conceptual Design Stage. Concurrent Engineering: Research and Applications. 2011;19(2):111–21.

Mastura M. T., Sapuan S. M., Mansor M. R. and Nuraini A. A.. Conceptual design of a natural fibre-reinforced composite automotive anti-roll bar using a hybrid approach. International Journal of Advanced Manufacturing Technology. 2017;9(5):2031–48.

Hambali A., Sapuan S. M., Ismail N. and Nukman Y.. Composite manufacturing process selection using analytical hierarchy process. International Journal of Mechanical and Materials Engineering. 2009;4(1):49–61.

F. M. Al-Oqla, S. M. Sapuan, M. R. Ishak, and A. A. Nuraini, “A decision-making model for selecting the most appropriate natural fiber - Polypropylene-based composites for automotive applications,” J. Compos. Mater., vol. 50, no. 4, pp. 543–556, 2015.

Al-Oqla F. M. and Salit M. S.. Materials Selection of Natural Fiber Composites using the Analytical Hierarchy Process in Materials Selection for Natural Fiber Composites, 1st ed., Cambridge, USA: Woodhead Publishing, Elsevier. 2017:169–234.

Peng A. H. and Xiao X. M.. Material selection using PROMETHEE combined with analytic network process under hybrid environment. Materials and Design. 2013;47:643–52.

Yousefpour M. and Rahimi A.. Characterization and selection of optimal parameters to achieve the best tribological performance of the electrodeposited Cr nanocomposite coating. Materials and Design. 2014;54:382–89.

Kuo C. J., Lin C., Hsu M. and Li M.. Evaluation of intelligent green building policies in Taiwan – Using fuzzy analytic hierarchical process and fuzzy transformation matrix. Energy and Building. 2017;139:146–59.

Al-Oqla F. M., Sapuan S. M., Ishak M. R. and Nuraini A. A.. Decision making model for optimal reinforcement condition of natural fiber composites. Fibers and Polymers. 2015;16(1):153–63.

Milani A. S., Shanian A., Lynam C. and Scarinci T.. An application of the analytic network process in multiple criteria material selection. Materials and Design. 2013;44:622–32.

Gencer C. and Gürpinar D.. Analytic network process in supplier selection: A case study in an electronic firm. Applied Mathematical Modelling. 2007;31(11):2475–86.

Hsu C.-W. and Hu A. H.. Applying hazardous substance management to supplier selection using analytic network process. Journal of Cleaner Production. 2009;17(2):255–64.

Liao C.-N. and Kao H.-P.. Supplier selection model using Taguchi loss function, analytical hierarchy process and multi-choice goal programming. Computers & Industrial Engineering. 2010;58(4):571–77.

Malak R. J., Aughenbaugh J. M. and Paredis C. J. J.. Multi-attribute utility analysis in set-based conceptual design. Computer-Aided Design. 2009;41(3):214–27.

Ogle R. A., Dee S. J. and Cox B. L.. Resolving inherently safer design conflicts with decision analysis and multi-attribute utility theory. Process Safety and Environmental Protection. 2015;97:61–69.

Hasan F., Jain P. K. and Kumar D.. Machine reconfigurability models using multi-attribute utility theory and power function approximation. Procedia Engineering. 2013;64:1354–63.

Sanayei A., Farid S. M., Abdi M. R. and Mohaghar A.. An integrated group decision-making process for supplier selection and order allocation using multi-attribute utility theory and linear programming. Journal of the Franklin Institute. 2008;345(7):731–47.

Mayyas A. T., Qattawi A., Mayyas A. R. and Omar M.. Quanti fi able measures of sustainability : a case study of materials selection for eco-lightweight auto-bodies. Journal of Cleaner Production. 2013;40:177–89.

Maniya K. and Bhatt M. G.. A selection of material using a novel type decision-making method: Preference selection index method. Materials and Design. 2010;31(4):1785–89.

Tzeng G. H. and Huang J. J.. TOPSIS and VIKOR in Multiple Attribute Decision Making Methods and Applications, United State of America: CRC Press. 2011;69–80.

Mansor M. R., Sapuan S. M., Hambali A., Zainudin E. S. and Nuraini A. A.. Materials Selection of Hybrid Bio-Composites Thermoset Matrix for Automotive Bumper Beam Application using Topsis Method. Advances in Environmental Biology. 2014;8(8):3138–42.

Mayyas A., Omar M. A., Hayajneh M. T., Mayyas A., Omar M. A. and Hayajneh M. T.. Eco-material selection using fuzzy TOPSIS method. International Journal of Sustainable Engineering. 2016.

Tzeng G. H. and Huang J. J.. ELECTRE Method in Multiple attributes decision making methods and applications, United State of America: CRC Press. 2011;81–93.

Shanian A., Milani A. S., Carson C. and Abeyaratne R. C.. A new application of ELECTRE III and revised Simos’ procedure for group material selection under weighting uncertainty. Knowledge-Based Systems. 2008;21(7):709–20.

Shanian A. and Savadogo O.. A non-compensatory compromised solution for material selection of bipolar plates for polymer electrolyte membrane fuel cell (PEMFC) using ELECTRE IV. Electrochimica Acta. 2006;51(25):5307–15.

Spurgeon V. J. and Spurgeon P. C.. The relative importance of potential outcomes of occupational guidance : An assessment by occupational guidance officers. Journal of Occupational Psychology. 1982;55:191–95.

Churchman C. W. and Ackoff R. L.. An approximate measure of value. Journal of Operations Research Society of America. 1954;2(1):172–87.

Reza Taherian M. N.. Performance and material selection of nanocomposite bipolar plate in proton exchange membrane fuel cells. International Journal of Energy Research. 2012;33(4):23–40.

Taherian R.. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection. Journal of Power Sources. 2014;265:370–90.

Vega J. F., Otegui J., Exposito M. T., Lopez M., Martin C. and Martinez J.. Structure and physical properties of polyethylenes obtained from dual catalysis process. Polymer Bulletin. 2008;60(2-3):331–42.

Chauhan A., Vaish R. and Bowen C.. Piezoelectric material selection for ultrasonic transducer and actuator applications. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2013;229(1):3–12.

Demian G., Grecu L. and Demian M.. Multi-criteria methods for selection of encapsulation materials for photovoltaic cells. Environmental Engineering and Management Journal. 2016;15(10):2337–46.

Cristóbal J. R. S.. Multi-criteria decision-making in the selection of a renewable energy project in spain : The Vikor method. Renewable Energy. 2011;36:498–502.

Jahan A., Mustapha F., Ismail M. Y., Sapuan S. M. and Bahraminasab M.. A comprehensive VIKOR method for material selection. Materials and Design. 2011;32(3):1215–21.

Opricovic S.. Fuzzy VIKOR with an application to water resources planning. Expert Systems with Applications. 2011;38(10):12983–90.

Khouja M.. The use of data envelopment analysis for technology selection. Computers Ind. Engineering. 1995;28(1):123–32.

Mousavi-Nasab S. H. and Sotoudeh-Anvai A.. A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems. Materials and Design. 2017.

Mathiyazhagan K., Sudhakar S. and Bhalotia A.. Modeling the criteria for selection of suppliers towards green aspect : a case in Indian automobile industry. OPSEARCH. 2017.

Narasimhan R., Talluri S. and Mendez D.. Supplier Evaluation and Rationalization via Data Envelopment Analysis : An Empirical Examination. The Journal of Supply Chain Management. 2001;28–37.

Liu J., Ding F. and Lall V.. Using data envelopment analysis to compare suppliers for supplier selection and performance improvement. Supply Chain Management: An International Journal. 2000;5(3):143–50.

Ho W., Xu X. and Dey P. K.. Multi-criteria decision making approaches for supplier evaluation and selection : A literature review. European Journal of Operational Research. 2010;202(1):16–24.

Wu D.. Supplier selection : A hybrid model using DEA , decision tree and neural network. Expert Systems With Applications. 2009;36(5):9105–12.

Ghorabaee M. K., Amiri M., Kazimieras E. and Antucheviciene J.. Supplier evaluation and selection in fuzzy environments : a review of MADM approaches. Economic Research-Ekonomska Istraživanja. 2017;9664:1–46.

Fallahpour A., Amindoust A., Antuchevičienė J. and Yazdani M.. Nonlinear genetic-based model for supplier selection : a comparative study. Technological and Economic Development of Economy. 2016;4913.

Jiao Q., Lan Y., Guan Z. and Z. Li. A New Material Selection Approach Using PROMETHEE Method. International Conference on Electronic & Mechanical Engineering and Information Technology. 2011;2950–54.

Das A. and Kumar A.. Selection of Spring Material Using PROMETHEE Method. Journal of Mechanical and Civil Engineering. 2015;12(5):82–91.

Chothani H. G., Kuchhadiya B. B. and Solanki J. R.. Selection of Material for Hacksaw Blade using AHP-PROMETHEE Approach. International Journal of Innovative Research in Advanced Engineering. 2015;2(1):26–30.

Patra A. and Dan P. K.. Selection of facility layout design using PROMETHEE and VIKOR. International Journal of Mechanical and Production Engineering. 2013;1(2):15–22.

Sun X. and Gollnick V.. Intelligent Multicriteria Decision Support System for Systems Design. Journal of Aircraft. 2014;51(1):1–11.

Yang S. S., Nasr N., Ong S. K. and Nee A. Y. C.. Designing automotive products for remanufacturing from material selection perspective. Journal of Cleaner Production. 2015;1–10.

Al-Oqla F. M., Salit M. S., Ishak M. R. and Aziz N. A.. Selecting natural fibers for bio-based materials with conflicting criteria. American Journal of Applied Sciences. 2015;12(1):64–71.

Davoodi M. M., Sapuan S. M., Ahmad D., Aidy A., Khalina A. and Jonoobi M.. Concept selection of car bumper beam with developed hybrid bio-composite material. Materials and Design. 2011;32(10):4857–65.

Mansor M. R., Sapuan S. M., Zainudin E. S., Nuraini A. A. and Hambali A.. Application of Integrated AHP-TOPSIS Method in Hybrid Natural Fiber Composites Materials Selection for Automotive Parking Brake Lever Component,” Aust. J. Basic Appl. Sci., vol. 8, pp. 431–439, 2014.

Mastura M. T., Sapuan S. M., Mansor M. R. and Nuraini A. A.. Environmentally conscious hybrid bio-composite material selection for automotive anti-roll bar. International Journal of Advanced Manufacturing Technology. 2017;89(5–8):2203–19.

Sapuan S. M. and Mansor M. R.. Concurrent engineering approach in the development of composite products : A review. Materials and Design. 2014;58:161–67.

Jiang Z., Zhang H. and Sutherland J. W.. Development of multi-criteria decision making model for remanufacturing technology portfolio selection. Journal of Cleaner Production. 2011;19(17–18):1939–45.

Hambali A., Sapuan S. M., Ismail N. and Nukman Y.. Use of analytical hierarchy process (AHP) for selecting the best design concept. Journal Teknologi. 2009;49:1–18.

Jahan A. and Edwards K. L.. A state-of-the-art survey on the influence of normalization techniques in ranking : Improving the materials selection process in engineering design. Materials and Design. 2015;65:335–42.

Al-widyan M. I. and Al-oqla F. M.. Utilization of Supplementary Energy Sources for Cooling In Hot Arid Regions via Decision-Making Model. International Journal of Engineering Research and Applications. 2011;1(4):1610–22.

Raharjo H. and Endah D.. Evaluating Relationship of Consistency Ratio and Number of Alternatives on Rank Reversal in the AHP Evaluating Relationship of Consistency Ratio and Number of Alternatives on. Quality Engineering. 2006;18(1):39–46.

Emre F., Genç S., Kurt M. and Akay D.. A multi-criteria intuitionistic fuzzy group desicion making for suplier selection with TOPSIS method. Expert System with Applications. 2009;36:11363–68.

Peng B., Akil H., Ghaddafy M., Khan A. and Md Nasir R.. Comparative study of wear performance of particulate and fiber-reinforced nano-ZnO / ultra-high molecular weight polyethylene hybrid composites using response surface methodology. Materials and Design. 2014;63:805–19.

Alavudeen A., Rajini N., Karthikeyan S., Thiruchitrambalam M. and Venkateshwaren N.. Mechanical properties of banana / kenaf fiber-reinforced hybrid polyester composites : Effect of woven fabric and random orientation. Materials and Design. 2015;66:246–57.

Hojo T., Zhilan X. U., Yang Y. and Hamada H.. Tensile properties of bamboo, jute and kenaf mat-reinforced composite. Energy Procedia. 2014;56:72–79.

Aimi N. N., Anuar H., Manshor M. R., Nazri W. B. W. and Sapuan S. M.. Optimizing the parameters in durian skin fiber reinforced polypropylene composites by response surface methodology. Industrial Crops and Products. 2014;54:291–95.

Mehboob H. and Chang S.-H.. Optimal design of a functionally graded biodegradable composite bone plate by using the Taguchi method and finite element analysis. Composites Structures. 2015;119:166–73.

Porras A., Maranon A. and Ashcroft I. A.. Optimal tensile properties of a Manicaria-based biocomposite by the Taguchi method. Composite Structures. 2016;140:692–701.

Sreenivasulu R.. Optimization of surface roughness and delamination damage of GFRP composite material in end milling using taguchi design method and artificial neural network. Procedia Engineering. 2013;64:785–94.

Newton P. F.. Quantifying size-dependent developmental trajectories of commercial-relevant fibre attributes within maturing black spruce plantations employing hierarchical linear models. Forest Ecology and Management. 2016;381:1–16.

Lopez F., Ibarra-Castanedo C., De Paulo Nicolau V. and Maldague X.. Optimization of pulsed thermography inspection by partial least-squares regression. NDT and E International. 2014;66:128–38.

Graupner N., Ziegmann G., Fabian W. and Beckmann J. M.. Procedural influences on compression and injection moulded cellulose fibre-reinforced polylactide (PLA) composites: Influence of fibre loading, fibre length, fibre orientation and voids. Composites Part A: Applied Science and Manufacturing. 2016;81:158–71.

Khademi F., Jamal S. M., Deshpande N. and Londhe S.. Predicting strength of recycled aggregate concrete using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression. International Journal of Sustainable Built Environment. 2016;5(2):355–69.

Xu X., Yan Z. and Carlo Q.. Electrical Power and Energy Systems Probabilistic load flow calculation with quasi-Monte Carlo and multiple linear regression. Electrical Power and Energy Systems. 2017;88:1–12.

Montgomery D. C. Design and Analysis of Experiments, 6th ed. United States of Amarica: John Wiley & Sons Inc, 2005.

Hill W. J. and Hunter W. G.. A Review of Response Surface Methodology: A Literature Survey. Technometrics. 1966;8(4):571–90.

Box G. E. P. and Wilson K. B.. On the Experimental Attainment of Optimum Conditions. Journal of the Royal Statistical Society Series B. 1951;13(1):1–45.

Fataneh Behrouzian S. M. A. R., Asad Mohammad Amini, Ali Alghooneh. Characterization of dietary fiber from coffee silverskin: An optimization study using response surface methodology. Bioactive Carbohydrates and Dietary Fibre. 2016;8:58–64.

Ashenai F., Ghasemi I., Menbari S. and Ayaz M.. Optimization of mechanical properties of polypropylene / talc / graphene composites using response surface methodology. Polymer Testing. 2016;53:283–92.

Ghani J. A., Choudhury I. A. and Hassan H. H.. Application of Taguchi method in the optimization of end milling parameters. Journal of Materials Proceeding Technology. 2004;145:84–92.

Kumar N. R., Rao C. R., Srikant P. and Rao B. R.. Mechanical properties of corn fiber reinforced polypropylene composites using Taguchi method. Materials Today Proceedings. 2015;2(4–5):3084–92.

Kumar M. S. S., Sundara N. M., Sampath P. S. and Vivek U.. Tribological analysis of nano clay / epoxy / glass fiber by using Taguchi ’ s technique. Journal of Materials & Design. 2015;70:1–9.

Kc B., Faruk O., Agnelli J. A. M., Leao A. L., Tjong J. and Sain M.. Sisal-glass fiber hybrid biocomposite: Optimization of injection molding parameters using Taguchi method for reducing shrinkage. Composites Part A: Applied Science and Manufacturing. 2016;83:152–59.

Prakash A., Sarkhel G. and Kumar K.. Strength Optimization for Kaolin Reinforced Epoxy Composite Using Taguchi Method. Materials Today Proceedings. 2015;2(4–5):2380–88.

Abdul Nasir A. A., Azmi A. I. and Khalil A. N. M.. Measurement and optimisation of residual tensile strength and delamination damage of drilled flax fibre reinforced composites. Measurement: Journal of the International Measurement Confederation. 2015;75:298–307.

Jamaluddin H., Ghani J. A., Deros B. M., Rahman M. N. A. and Ramli R.. Quality improvement using Taguchi method in shot blasting process. Journal of Mechanical Engineering and Sciences. 2016;10(2):2200–13.

Jahan A., Ismail Y., Shuib S., Norfazidah D. and Edwards K. L.. An aggregation technique for optimal decision-making in materials selection. Materials and Design. 2011;32:4918–24.

Al-Oqla F. M., Salit M. S., Ishak M. R. and Aziz N. A.. Combined multi-criteria evaluation stage technique as an agro waste evaluation indicator for polymeric composites: Date palm fibers as a case study. BioResources. 2014;9(3):4608–21.

Sabaei D., Erkoyuncu J. and Roy R.. A review of multi-criteria decision making methods for enhanced maintenance deliveryvol. Understanding the life cycle implications of manufacturing. 2015;37:30–35.

Published

2018-03-31

How to Cite

[1]
M. Noryani, S. Sapuan, and M. Mastura, “Multi-criteria decision-making tools for material selection of natural fibre composites: A review”, J. Mech. Eng. Sci., vol. 12, no. 1, pp. 3330–3353, Mar. 2018.