Effect of Alkaline treatment on the characteristics of pineapple leaves fibre and PALF/PP biocomposite

Authors

  • S. Gnanasekaran Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia. Phone: +6095492888; Fax: +6095492889
  • N.I.A.A. Nordin Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia. Phone: +6095492888; Fax: +6095492889
  • M.M.M. Hamidi Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia. Phone: +6095492888; Fax: +6095492889
  • J.H. Shariffuddin College of Engineering, Department of Chemical Engineering, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia. Phone: +6094245000; Fax: +6094245055

DOI:

https://doi.org/10.15282/jmes.15.4.2021.05.0671

Keywords:

Pineapple leaves fibre, Polypropylene, biocomposite, tensile strength, water absorption

Abstract

Pineapple leaves fibre (PALF) is one of the natural fibre that has high potential to substitute non-renewable synthetic fibre in thermoplastic products. The PALF were alkali treated with different concentrations of NaOH. Untreated and alkali treated PALF were characterized using Thermal Gravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM) to determine the thermal stability and surface morphology of the fibres respectively. Biocomposites were prepared by reinforced alkali treated and untreated PALF with polypropylene (PP) matrix. Tensile properties and water absorption analysis of PALF/PP biocomposites were studied. Biocomposite with 8 wt.% of alkali treated PALF express excellent thermal stability, with maximum degradation temperature at 270 ℃ which is a 7.17% improvement compared to untreated PALF. This biocomposite also had increased tensile strength (116 MPa) with 43% improvement compared to untreated PALF/PP (66 MPa) biocomposite and had lower water absorption at 6% compared to untreated biocomposite which at 21%. Hence, alkali treated PALF is able to improve the characteristic of PALF and increase the compatibility between fibre and polymer by reducing hemicellulose and lignin components.

References

K. Wahyuningsih, E. S. Iriani, and F. Fahma, “Utilization of cellulose from pineapple leaf fibers as nanofiller in polyvinyl alcohol-based film,” Indones. J. Chem., vol. 16, no. 2, pp. 181–189, 2016.

N. Dinh Vu, H. Thi Tran, and T. Duy Nguyen, “Characterization of polypropylene green composites reinforced by cellulose fibers extracted from rice straw,” Int. J. Polym. Sci., vol. 2018, no. 1813847, pp. 1–10, 2018.

M. Mahardika, H. Abral, A. Kasim, S. Arief, and M. Asrofi, “Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication,” Fibers, vol. 6, no. 2, pp. 1–12, 2018.

B. M. Cherian, A. L. Leão, S. F. de Souza, S. Thomas, L. A. Pothan, and M. Kottaisamy, “Isolation of nanocellulose from pineapple leaf fibres by steam explosion,” Carbohydr. Polym., vol. 81, no. 3, pp. 720–725, 2010.

S. M. Sapuan and S. Izwan, “Mechanical properties (impact strength) of pineapple leaf fibre reinforced polypropylene composites with variation of fibre loading and treatment process.,” Mater. Sci. Adv. Compos. Mater., vol. 2, no. 4, pp. 1–16, 2018.

M. Z. R. Khan, S. K. Srivastava, and M. K. Gupta, “Tensile and flexural properties of natural fiber reinforced polymer composites: A review,” J. Reinf. Plast. Compos., vol. 37, no. 24, pp. 1435–1455, 2018.

Z. Zhou, X. Liu, B. Hu, J. Wang, D. Xin, Z. Wang, and Y. Qiu, “Hydrophobic surface modification of ramie fibers with ethanol pretreatment and atmospheric pressure plasma treatment,” Surf. Coatings Technol., vol. 205, no. 17–18, pp. 4205–4210, 2011.

Y. F. Shih, M. Y. Chou, W. C. Chang, H. Y. Lian, and C. M. Chen, “Completely biodegradable composites reinforced by the cellulose nanofibers of pineapple leaves modified by eco-friendly methods,” J. Polym. Res., vol. 24, no. 11, 2017.

V. B. Shet, N. Sanil, M. Bhat, M. Naik, L. N. Mascarenhas, L. C. Goveas, C. V. Rao, P. Ujwal, K. Sandesh, and A. Aparna, “Acid hydrolysis optimization of cocoa pod shell using response surface methodology approach toward ethanol production,” Agric. Nat. Resour., vol. 52, no. 6, pp. 581–587, 2018.

A. Shavandi and M. A. Ali, “Keratin based thermoplastic biocomposites: a review,” Rev. Environ. Sci. Biotechnol., vol. 0123456789, 2019.

J. Trifol, D. Plackett, C. Sillard, O. Hassager, A. E. Daugaard, J. Bras, and P. Szabo, “A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high-performance polylactide nanocomposites,” J. Appl. Polym. Sci., vol. 133, no. 14, pp. 1–11, 2016.

S. Gnanasekaran, Y. Y. Li, J. H. Shariffuddin, and N. I. A. A. Nordin, “Production of cellulose and microcellulose from pineapple leaf fibre by chemical-mechanical treatment,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 991, no. 1.

B. Deepa, E. Abraham, N. Cordeiro, M. Mozetic, A. P. Mathew, K. Oksman, M. Faria, S. Thomas, and L. A. Pothan, “Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study,” Cellulose, vol. 22, no. 2, pp. 1075–1090, 2015.

S. Gopi, A. Amalraj, S. Jude, S. Thomas, and Q. Guo, “Bionanocomposite films based on potato, tapioca starch and chitosan reinforced with cellulose nanofiber isolated from turmeric spent,” J. Taiwan Inst. Chem. Eng., vol. 96, pp. 664–671, 2019.

M. Z. Selamat, D. M. Sivakumar, P. Azma, M. D. Ahadlin, and Y. Yuhazri, “Mechanical properties of starch composite reinforced by pineapple leaf fiber (PLF) from josapine cultivar,” ARPN J. Eng. Appl. Sci., vol. 11, no. 16, pp. 9783–9788, 2016.

N. I. A. A. Nordin, H. Ariffin, M. A. Hassan, Y. Shirai, Y. Ando, N. A. Ibrahim, and W. M. Z. W. Yunus, “Superheated steam treatment of oil palm mesocarp fiber improved the properties of fiber-polypropylene biocomposite,” BioResources, vol. 12, no. 1, pp. 68–81, 2017.

N. F. M. Zain, S. M. Yusop, and I. Ahmad, “Preparation and characterization of cellulose and nanocellulose from Pomelo (citrus grandis) Albedo,” J. Nutr. Food Sci., vol. 05, no. 01, pp. 10–13, 2014.

I. M. Fareez, N. A. Ibrahim, W. M. H. Wan Yaacob, N. A. Mamat Razali, A. H. Jasni, and F. Abdul Aziz, “Characteristics of cellulose extracted from Josapine pineapple leaf fibre after alkali treatment followed by extensive bleaching,” Cellulose, vol. 25, no. 8, pp. 4407–4421, 2018.

B. Amalia, C. Imawan, and A. Listyarini, “Fabrication and characterization of thick films made of chitosan and nanofibrillar cellulose derived from pineapple leaf,” IOP Conf. Ser. Mater. Sci. Eng., vol. 496, no. 1, pp. 4–9, 2019.

M. Szymańska-Chargot, M. Chylinska, G. Pertile, P. M. Pieczywek, K. J. Cieslak, A. Zdunek, and M. Frac, “Influence of chitosan addition on the mechanical and antibacterial properties of carrot cellulose nanofibre film,” Cellulose, vol. 26, no. 18, pp. 9613–9629, 2019.

Y. Song, W. Jiang, Y. Zhang, H. Ben, G. Han, and A. J. Ragauskas, “Isolation and characterization of cellulosic fibers from kenaf bast using steam explosion and Fenton oxidation treatment,” Cellulose, vol. 25, no. 9, pp. 4979–4992, 2018.

S. Gnanasekaran, N. I. A. A. Nordin, S. S. Jamari, and J. H. Shariffuddin, “Effect of Steam-Alkaline coupled treatment on N36 cultivar pineapple leave fibre for isolation of cellulose,” Mater. Today Proc., In pressed, 2021.

B. Deepa, E. Abraham, B. M. Cherian, A. Bismarck, J. J. Blaker, L. A. Pothan, A. L. Leao, S. F. Souza, and M. Kottaisamy, “Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion,” Bioresour. Technol., vol. 102, no. 2, pp. 1988–1997, 2011.

A. R. S. Neto, M. A. M. Araujo, R. M. P. Barboza, A. S. Fonseca, G. H. D. Tonoli, F. V. D. Souza, L. H. C. Mattoso, and J. M. Marconcini, “Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites,” Ind. Crops Prod., vol. 64, pp. 68–78, 2015.

D. Nhuchhen, P. Basu, and B. Acharya, “A comprehensive review on biomass torrefaction,” Int. J. Renew. Energy Biofuels, vol. 2014, pp. 1–56, 2014.

W. O. Wan Nadirah, M. Jawaid, A. A. Al Masri, H. P. S. Abdul Khalil, S. S. Suhaily, and A. R. Mohamed, “Cell wall morphology, chemical and thermal analysis of cultivated pineapple leaf fibres for industrial applications,” J. Polym. Environ., vol. 20, no. 2, pp. 404–411, 2012.

A. Oushabi, S. Sair, F. Oudrhiri Hassani, Y. Abboud, O. Tanane, and A. El Bouari, “The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite,” South African J. Chem. Eng., vol. 23, no. 2017, pp. 116–123, 2017.

M. Dilamian and B. Noroozi, “A combined homogenization-high intensity ultrasonication process for individualizaion of cellulose micro-nano fibers from rice straw,” Cellulose, vol. 26, no. 10, pp. 5831–5849, 2019.

H. Abral, J. Ariksa, M. Mahardika, D. Handayani, I. Aminah, N. Sandrawati, A. B. Pratama, N. Fajri, S. M. Sapuan, and R. A. Ilyas, “Transparent and antimicrobial cellulose film from ginger nanofiber,” Food Hydrocoll., vol. 98, no. 2020, p. 105266, 2020.

C. H. Tsou, M. C. Suen, W. H. Yao, J. T. Yeh, C. S. Wu, C. Y. Tsou, S. H. Chiu, J. C. Chen, R. Y. Wang, S. M. Lin, W. S. Hung, M. D. Guzman, C. C Hu, and K. R. Lee, “Preparation and characterization of Bioplastic-Based green renewable composites from tapioca with acetyl tributyl citrate as a plasticizer,” Materials (Basel)., vol. 7, no. 8, pp. 5617–5632, 2014.

E. Galiwango, N. S. Abdel Rahman, A. H. Al-Marzouqi, M. M. Abu-Omar, and A. A. Khaleel, “Isolation and characterization of cellulose and α-cellulose from date palm biomass waste,” Heliyon, vol. 5, no. 12, p. e02937, 2019.

M. T. Islam, M. M. Alam, A. Patrucco, A. Montarsolo, and M. Zoccola, “Preparation of nanocellulose: A review,” AATCC J. Res., vol. 1, no. 5, pp. 17–23, 2014.

D. Chiaramonti, M. Prussi, S. Ferrero, L. Oriani, P. Ottonello, P. Torre, and F. Cherchi, “Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method,” Biomass and Bioenergy, vol. 46, pp. 25–35, 2012.

M. I. Najeeb, M. T. H. Sultan, Y. Andou, A. U. M. Shah, K. Eksiler, M. Jawaid, and A. H. Ariffin, “Characterization of silane treated Malaysian Yankee Pineapple AC6 leaf fiber (PALF) towards industrial applications,” J. Mater. Res. Technol., vol. 9, no. 3, pp. 3128–3139, 2020.

X. Li, L. G. Tabil, and S. Panigrahi, “Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review,” J. Polym. Environ., vol. 15, no. 1, pp. 25–33, 2007.

S. Gnanasekaran, N. S. N. Muslih, J. H. Shariffuddin, and N. I. A. A. Nordin, “Effect of steam and bleaching treatment on the characteristics of pineapple leaves fibre derived cellulose,” Pertanika J. Sci. Technol., vol. 28, no. S2, pp. 135–148, 2020.

M. R. Islam, M. D. H. Beg, and A. Gupta, “Characterization of alkali-treated kenaf fibre-reinforced recycled polypropylene composites,” J. Thermoplast. Compos. Mater., vol. 27, no. 7, pp. 909–932, 2014.

S. R. Djafari Petroudy, Physical and mechanical properties of natural fibers. Elsevier Ltd, 2017.

M. D. H. Beg, J. O. Akindoyo, S. Ghazali, and A. A. Mamun, “Impact modified oil palm empty fruit bunch fiber/poly(lactic) acid composite,” Int. J. Chem. Mol. Nucl. Mater. Mettallurgical Eng., vol. 9, no. 1, pp. 165–170, 2015.

H. P. S. A. Khalil, Y. Davoudpour, M. N. Islam, A. Mustapha, K. Sudesh, R. Dungani, and M. Jawaid, “Production and modification of nanofibrillated cellulose using various mechanical processes: A review,” Carbohydr. Polym., vol. 99, pp. 649–665, 2014.

Downloads

Published

2021-12-15

How to Cite

[1]
S. Gnanasekaran, N. I. A. Ahamad Nordin, M.M.M. Hamidi, and J.H. Shariffuddin, “Effect of Alkaline treatment on the characteristics of pineapple leaves fibre and PALF/PP biocomposite”, J. Mech. Eng. Sci., vol. 15, no. 4, pp. 8518–8528, Dec. 2021.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.