Green strength properties of waterjet abrasive waste as potential composition in green mould by Taguchi and ANOVA approach

Authors

  • N.F.B.W. Anuar Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia. Phone: +6062701000; Fax: +6062701022
  • M.L. Mohd Khusairi Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia. Phone: +6062701000; Fax: +6062701022
  • R.M. Saad Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia.
  • S.A. Hassan Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia. Phone: +6062701000; Fax: +6062701022
  • Z. Marjom Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia. Phone: +6062701000; Fax: +6062701022
  • A.H. Abdul Rasib Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia. Phone: +6062701000; Fax: +6062701022

DOI:

https://doi.org/10.15282/jmes.15.4.2021.06.0672

Keywords:

Sand casting, waterjet abrasive waste, Taguchi method, green strength

Abstract

The sand casting process still continues today due to the cost-effectiveness of materials and processes. There is a wide variety of castings related to composition and size, but silica sand is widely available from coastal line mining and has a negative impact on the environment. Moreover, waste from waterjet cutting of non-ferrous and ferrous metals is practically unhazardous and may potentially be used in sand casting mould. The aim of this paper is to optimize the proportion of coal dust, water and bentonite added to the silica sand mixture and the waterjet cutting abrasive waste as a new way of handling waste with the potential to be used in sand casting manufacturing. The method used was L9 orthogonal array optimization and the composition was qualitatively measured using a green compression strength test and a green shear strength test. Factors were evaluated using the analysis of variance (ANOVA) to find the the critical factors while confirmation test was conducted for the optimal material proportion. The study concluded that the ideal ratio for silica sand mixture with waterjet abrasive waste is bentonite-12%, coal dust-5%, and water-7% for green compression strength while bentonite-12%, coal dust-6%, water-7% for green shear strength. With proper selection, the incorporation of waterjet abrasive waste into the green sand mixture is promising to potentially be used in green sand mould casting without undermine the quality of mould.

References

R. M. Said, M. R. M. Kamal, and N. H. Miswan and S. J. Ng, “Optimization of moulding composition for quality improvement of sand casting,” J. Adv. Manuf. Technol., vol. 12, no. 1, pp. 301–310, 2018.

S. Shahria, “Optimization of molding sand composition for casting Al Alloy,” Int. J. Mech. Eng. Appl., vol. 5, no. 3, p. 155, 2017, doi: 10.11648/j.ijmea.20170503.13.

L. B. Q. Brito, G. de F. Brito, and C. R. da S. Morais, “Alternative for fine pure silica in kiln-casting glass molds,” Mater. Lett., vol. 252, pp. 19–22, 2019, doi: 10.1016/j.matlet.2019.05.048.

K. Srinivasan, C. S. K. Siddharth, L. V. A. Kaarthic, and M. Thenarasu, “Evaluation of mechanical properties, economic and environmental benefits of partially replacing silica sand with biomass ash for aluminium casting,” Mater. Today Proc., vol. 5, no. 5, pp. 12984–12992, 2018, doi: 10.1016/j.matpr.2018.02.283.

J. Sadarang, R. K. Nayak, and I. Panigrahi, “Effect of binder and moisture content on compactibility and shear strength of river bed green sand mould,” Mater. Today Proc., vol. 46, pp. 5286–5290, 2021, doi: 10.1016/j.matpr.2020.08.640.

A. Srivastava and S. K. Singh, “Utilization of alternative sand for preparation of sustainable mortar: A review,” J. Clean. Prod., vol. 253, p. 119706, 2020, doi: 10.1016/j.jclepro.2019.119706.

J. J. Chen, B. H. Li, P. L. Ng, and A. K. H. Kwan, “Adding granite polishing waste to reduce sand and cement contents and improve performance of mortar,” J. Clean. Prod., vol. 279, p. 123653, 2021, doi: 10.1016/j.jclepro.2020.123653.

A. Kumar, S. Pratheba, R. Rajendran, K. Perumal, N. Lingeshwaran, and S. Sambaraju, “An experimental study on the mechanical properties of concrete replacing sand with quarry dust and waste foundry sand,” Mater. Today Proc., vol. 33, pp. 828–832, 2020, doi: 10.1016/j.matpr.2020.06.271.

M. Kantha Babu and O. V. Krishnaiah Chetty, “A study on recycling of abrasives in abrasive water jet machining,” Wear, vol. 254, no. 7–8, pp. 763–773, 2003, doi: 10.1016/S0043-1648(03)00256-4.

B. Bhardwaj and P. Kumar, “Waste foundry sand in concrete: A review,” Constr. Build. Mater., vol. 156, pp. 661–674, 2017, doi: 10.1016/j.conbuildmat.2017.09.010.

A. J. Rajan, C. Kailasanathan, B. Stalin, P. R. Rajkumar, T. Gangadharan, and A. Perumal, “Optimization of mould sand properties by mixing of granite powder using Taguchi method,” Mater. Today Proc., vol. 45, pp. 2254–2259, 2021, doi: 10.1016/j.matpr.2020.10.231.

N. Skanavi and T. Dovydenko, “Effects of waterjet cutting waste addition on properties of building ceramics,” in MATEC Web of Conferences, 2018, vol. 196, p. 04057, doi: 10.1051/matecconf/201819604057.

I. Izdebska-Szanda, M. Angrecki, and A. Palma, “Recycling of waste moulding sands with new binders,” Arch. Foundry Eng., vol. 13, no. 2, pp. 43–48, 2013, doi: 10.2478/afe-2013-0034.

V. D. Prasad, E. L. Prakash, M. Abishek, K. Ushanth Dev, and C. K. Sanjay Kiran, “Study on concrete containing waste foundry sand, fly ash and polypropylene fibre using Taguchi Method,” Mater. Today Proc., vol. 5, no. 11, pp. 23964–23973, 2018, doi: 10.1016/j.matpr.2018.10.189.

C. Saikaew and S. Wiengwiset, “Optimization of molding sand composition for quality improvement of iron castings,” Appl. Clay Sci., vol. 67–68, pp. 26–31, 2012, doi: 10.1016/j.clay.2012.07.005.

H. Qu et al., “Effect of shale mineralogy characteristics on the perforation performance and particle fragmentation of abrasive waterjet,” Powder Technol., vol. 367, pp. 427–442, 2020, doi: 10.1016/j.powtec.2020.03.068.

K. C. APPARAO and A. K. BIRRU, “QFD-Taguchi based hybrid approach in die casting process optimization,” Trans. Nonferrous Met. Soc. China, vol. 27, no. 11, pp. 2345–2356, 2017, doi: 10.1016/S1003-6326(17)60260-7.

B. A. M. PASHA and K. MOHAMED, “Taguchi approach to influence of processing parameters on erosive wear behaviour of Al7034-T6 composites,” Trans. Nonferrous Met. Soc. China, vol. 27, no. 10, pp. 2163–2171, 2017, doi: 10.1016/S1003-6326(17)60242-5.

M. Viquar Mohiuddin, A. Krishnaiah, S. Ferhathullah Hussainy, and P. Laxminarayana, “Influence of process parameters on quality of Al7SiMg alloy casting using statistical techniques,” Mater. Today Proc., vol. 3, no. 10, pp. 3726–3733, 2016, doi: 10.1016/j.matpr.2016.11.020.

S. N. Bansode, V. M. Phalle, and S. S. Mantha, “Optimization of process parameters to improve dimensional accuracy of investment casting using Taguchi approach,” Adv. Mech. Eng., vol. 11, no. 4, p. 168781401984146, 2019, doi: 10.1177/1687814019841460.

S. V. Rao and N. L. Prasad, “Parametric optimization of green sand moulding process based on wet tensile strength – A full factorial experimental approach,” Int. J. Eng. Res. Technol., vol. 2, no. 12, pp. 2544–2548, 2013.

D. Patel, V. Deshpande, E. Jha, V. Patel, S. Desai, and J. Patel, “Study of sand composition on mould properties and selection of Taguchi orthogonal array for design of experiments,” Int. J. Curr. Eng. Sci. Res., vol. 2, no. 3, pp. 31–34, 2015.

X. Sun, Y. Mo, J. Li, Y. Chu, L. Liu, and S. Liao, “Study on the energy charging process of a plate-type latent heat thermal energy storage unit and optimization using Taguchi method,” Appl. Therm. Eng., vol. 164, p. 114528, 2020, doi: 10.1016/j.applthermaleng.2019.114528.

V. Ayhan et al., “Optimization of the factors affecting performance and emissions in a diesel engine using biodiesel and EGR with Taguchi method,” Fuel, vol. 261, p. 116371, 2020, doi: 10.1016/j.fuel.2019.116371.

M. V. Mohiuddin, A. Krishnaiah, and S. F. Hussainy, “Effect of composition of sand mold on mechanical properties and density of Al-Alloy casting using Taguchi design approach,” Int. J. Eng. Res. Appl., vol. 5, no. 3, pp. 37–41, 2015.

A. Balaram Naik and A. Chennakeshava Reddy, “Optimization of tensile strength in TIG welding using the Taguchi method and analysis of variance (ANOVA),” Therm. Sci. Eng. Prog., vol. 8, pp. 327–339, 2018, doi: 10.1016/j.tsep.2018.08.005.

H. Khandelwal and B. Ravi, “Effect of molding parameters on chemically bonded sand mold properties,” J. Manuf. Process., vol. 22, pp. 127–133, 2016, doi: 10.1016/j.jmapro.2016.03.007.

Downloads

Published

2021-12-15

How to Cite

[1]
N. F. B. B. WAKHI ANUAR, M.L. Mohd Khusairi, R.M. Saad, S.A. Hassan, Z. Marjom, and A.H. Abdul Rasib, “Green strength properties of waterjet abrasive waste as potential composition in green mould by Taguchi and ANOVA approach ”, J. Mech. Eng. Sci., vol. 15, no. 4, pp. 8529–8539, Dec. 2021.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.