Mathematical modelling of concrete compressive strength with waste tire rubber as fine aggregate

Authors

  • B. W. Chong Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia. Phone: +6094246234; Fax: +609424222
  • R. Othman Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia. Phone: +6094246234; Fax: +609424222
  • P. J. Ramadhansyah Department of Civil Engineering, College of Engineering, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
  • S. I. Doh Department of Civil Engineering, College of Engineering, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
  • Xiaofeng Li Department of Civil Engineering, College of Engineering, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia

DOI:

https://doi.org/10.15282/jmes.15.3.2021.12.0656

Keywords:

Concrete, compressive strength, waste tire rubber, response surface methodology, regression

Abstract

With the increasing number of vehicle due to the boom of population and rapid modernisation, the management of waste tire is growing problem. Reusing grinded tire rubber in concrete is a green innovation which provide an outlet for reusing waste tire. While providing certain benefits to concrete, incorporation of tire rubber results in significant loss of concrete compressive strength which hinders the potential of rubberised concrete. This paper aims to develop mathematical models on the influence of tire rubber replacement on the compressive strength of concrete using design of experiment (DoE). 33 data sets are gathered from available literature on concrete with waste tire rubber as partial replacement of fine aggregate. Response surface methodology (RSM) model of rubberised concrete compressive strength shows great accuracy with coefficient of determination (R2) of 0.9923 and root-mean-square error (RMSE) of 2.368. Regression analysis on the strength index of rubberised concrete shows that rubberised concrete strength loss can be expressed in an exponential function of percentage of replacement. The strength loss is attributed to morphology of rubber particles and the weak bonds between rubber particles and cement paste. Hence, tire rubber replacement should be done sparingly with proper treatment and control to minimise concrete strength loss.

References

A. Hejna, J. Korol, M. Przybysz-Romatowska, Ł. Zedler, B. Chmielnicki, and K. Formela, “Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers – A review,” Waste Manag., vol. 108, no. 2020, pp. 106–118, 2020, doi: 10.1016/j.wasman.2020.04.032.

J. D. Martínez, N. Puy, R. Murillo, T. García, M. V. Navarro, and A. M. Mastral, “Waste tyre pyrolysis - A review,” Renew. Sustain. Energy Rev., vol. 23, pp. 179–213, 2013, doi: 10.1016/j.rser.2013.02.038.

W. H. Yung, L. C. Yung, and L. H. Hua, “A study of the durability properties of waste tire rubber applied to self-compacting concrete,” Constr. Build. Mater., vol. 41, pp. 665–672, 2013, doi: 10.1016/j.conbuildmat.2012.11.019.

F. Moreno, M. C. Rubio, and M. J. Martinez-Echevarria, “Use of crumb rubber in flexible pavements,” Int. J. Innov. Res. Sci. Technol., no. February, pp. 1–8, 2018, doi: 10.15680/IJIRSET.2018.0704009.

A. Benazzouk, O. Douzane, T. Langlet, K. Mezreb, J. M. Roucoult, and M. Quéneudec, “Physico-mechanical properties and water absorption of cement composite containing shredded rubber wastes,” Cem. Concr. Compos., vol. 29, no. 10, pp. 732–740, 2007, doi: 10.1016/j.cemconcomp.2007.07.001.

S. K. Thiruvangodan, “Waste Tyre Management in Malaysia,” Universiti Putra Malaysia, 2006.

V. Munikanan, M. A. Yahya, M. A. Yusof, and M. H. F. Radzi, “Fine granular of shredded waste tyre for road kerb application as improvised road furniture,” in International Conference On Engineering And Technology (Intcet 2017), 2018, p. 020061, doi: 10.1063/1.5022955.

M. J. Forrest, “Recycling and Re-use of Waste Rubber,” in Recycling and Re-use of Waste Rubber, no. July, 2019.

A. H. Buss, J. L. Kovaleski, R. N. Pagani, V. L. da Silva, and J. de Matos Silva, “Proposal to Reuse Rubber Waste from End-Of-Life Tires Using Thermosetting Resin,” Sustain., vol. 11, no. 24, 2019, doi: 10.3390/su11246997.

A. Moustafa and M. A. Elgawady, “Mechanical properties of high strength concrete with scrap tire rubber,” Constr. Build. Mater., vol. 93, pp. 249–256, 2015, doi: 10.1016/j.conbuildmat.2015.05.115.

N. H. Deshmukh and P. D. Y. Kshirsagar, “Utilization of rubber waste in construction of flexible pavement,” Int. J. Adv. Res. Dev., vol. 2, no. 7, pp. 70–77, 2017, [Online]. Available: www.ijarnd.com.

K. A. Bani-Hani and A. Senouci, “Using waste tire crumb rubber as an alternative aggregate for concrete pedestrian blocks,” Jordan J. Civ. Eng., vol. 9, no. 3, pp. 400–409, 2015, doi: 10.14525/jjce.9.3.3080.

M. Elchalakani, “High strength rubberized concrete containing silica fume for the construction of sustainable road side barriers,” Structures, vol. 1, pp. 20–38, 2015, doi: 10.1016/j.istruc.2014.06.001.

F. M. Silva, E. J. P. Miranda, J. M. C. Dos Santos, L. A. Gachet-Barbosa, A. E. Gomes, and R. C. C. Lintz, “The use of tire rubber in the production of high-performance concrete,” Ceramica, vol. 65, pp. 110–114, 2019, doi: 10.1590/0366-6913201965S12598.

F. Azevedo, F. Pacheco-Torgal, C. Jesus, J. L. Barroso De Aguiar, and A. F. Camões, “Properties and durability of HPC with tyre rubber wastes,” Constr. Build. Mater., vol. 34, pp. 186–191, 2012, doi: 10.1016/j.conbuildmat.2012.02.062.

A. Siddika, M. A. Al Mamun, R. Alyousef, Y. H. M. Amran, F. Aslani, and H. Alabduljabbar, “Properties and utilizations of waste tire rubber in concrete: A review,” Constr. Build. Mater., vol. 224, pp. 711–731, Nov. 2019, doi: 10.1016/j.conbuildmat.2019.07.108.

I. H. Boyaci, “A new approach for determination of enzyme kinetic constants using response surface methodology,” Biochem. Eng. J., vol. 25, no. 1, pp. 55–62, 2005, doi: 10.1016/j.bej.2005.04.001.

A. Busari, “Response Surface Analysis of the Compressive Strength of Metakoalin Self-Compacting Concrete,” Adv. Sci. Technol. Res. J., vol. 13, no. 2, pp. 7–13, 2019, doi: 10.12913/22998624/105608.

de la R. Ángel, G. Ruiz, and E. Poveda, “Study of the Compression Behavior of Steel-Fiber Reinforced Concrete by Means of the Response Surface Methodology,” Appl. Sci., vol. 9, no. 24, p. 5330, Dec. 2019, doi: 10.3390/app9245330.

A. Hammoudi, K. Moussaceb, C. Belebchouche, and F. Dahmoune, “Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates,” Constr. Build. Mater., vol. 209, pp. 425–436, 2019, doi: 10.1016/j.conbuildmat.2019.03.119.

B. S. Thomas, R. C. Gupta, P. Mehra, and S. Kumar, “Performance of high strength rubberized concrete in aggressive environment,” Constr. Build. Mater., vol. 83, pp. 320–326, 2015, doi: 10.1016/j.conbuildmat.2015.03.012.

B. S. Thomas, R. C. Gupta, and V. J. Panicker, “Recycling of waste tire rubber as aggregate in concrete: Durability-related performance,” J. Clean. Prod., vol. 112, pp. 504–513, 2016, doi: 10.1016/j.jclepro.2015.08.046.

G. Girskas and D. Nagrockienė, “Crushed rubber waste impact of concrete basic properties,” Constr. Build. Mater., vol. 140, pp. 36–42, 2017, doi: 10.1016/j.conbuildmat.2017.02.107.

A. Abdelmonem, M. S. El-Feky, E. S. A. R. Nasr, and M. Kohail, “Performance of high strength concrete containing recycled rubber,” Constr. Build. Mater., vol. 227, p. 116660, 2019, doi: 10.1016/j.conbuildmat.2019.08.041.

N. Ganesan, J. Bharati Raj, and A. P. Shashikala, “Flexural fatigue behavior of self compacting rubberized concrete,” Constr. Build. Mater., vol. 44, pp. 7–14, 2013, doi: 10.1016/j.conbuildmat.2013.02.077.

H. Su, J. Yang, T. C. Ling, G. S. Ghataora, and S. Dirar, “Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes,” J. Clean. Prod., vol. 91, no. December, pp. 288–296, 2015, doi: 10.1016/j.jclepro.2014.12.022.

N. N. Gerges, C. A. Issa, and S. A. Fawaz, “Rubber concrete: Mechanical and dynamical properties,” Case Stud. Constr. Mater., vol. 9, no. August, p. e00184, 2018, doi: 10.1016/j.cscm.2018.e00184.

K. B. Najim and M. R. Hall, “A review of the fresh/hardened properties and applications for plain- (PRC) and self-compacting rubberised concrete (SCRC),” Constr. Build. Mater., vol. 24, no. 11, pp. 2043–2051, 2010, doi: 10.1016/j.conbuildmat.2010.04.056.

A. M. Grabiec and Z. Piasta, “Study on compatibility of cement-superplasticiser assisted by multicriteria statistical optimisation,” J. Mater. Process. Technol., vol. 154, pp. 197--2203, 2004, doi: 10.1016/j.matprotec.2004.03.020.

ENV 1992-1 Eurocode 2. Design of Concrete Structures—Part 1: General Rules and Rules for Buildings. London, United Kingdom: British Standards Institution, 2004.

A. Jain, “Characteristics of Silica Fume Concrete,” Int. J. Comput. Appl., pp. 23–26, 2015.

D. Rao and D. T. Sekhar, “Studies on Relationship Between Water/Binder Ratio And Compressive Strength Of High Volume Fly Ash Concrete,” Am. J. Eng. Res., vol. 02, no. 08, pp. 2320–847, 2015, [Online]. Available: www.ajer.org.

P. G. Asteris and V. G. Mokos, “Concrete compressive strength using artificial neural networks,” Neural Comput. Appl., vol. 32, no. 15, pp. 11807–11826, 2020, doi: 10.1007/s00521-019-04663-2.

C. Nagarajan, P. Shanumugasundaram, and S. R. Anmeeganathan, “Properties of high strength concrete containing surface-modified crumb rubber,” Gradjevinar, vol. 71, no. 7, pp. 579–588, 2019, doi: 10.14256/JCE.2312.2018.

B. S. Thomas and R. Chandra Gupta, “Properties of high strength concrete containing scrap tire rubber,” J. Clean. Prod., vol. 113, pp. 86–92, 2016, doi: 10.1016/j.jclepro.2015.11.019.

Downloads

Published

2021-09-19 — Updated on 2021-09-19

Versions

How to Cite

[1]
B. W. Chong, R. Othman, P. J. Ramadhansyah, S. I. Doh, and X. Li, “Mathematical modelling of concrete compressive strength with waste tire rubber as fine aggregate”, J. Mech. Eng. Sci., vol. 15, no. 3, pp. 8344–8355, Sep. 2021.