The onset of magnetic nanofluid convection because of selective absorption of radiation

Authors

  • Amit Mahajan Department of Applied Sciences,National Institute of Technology Delhi, Narela, Delhi, 110040, India
  • Mahesh Kumar Sharma Department of Mathematics, Maharaja Agrasen University, Baddi, Himachal Pradesh, 174103, India

DOI:

https://doi.org/10.15282/jmes.15.1.2021.25.0625

Keywords:

Magnetic nanofluids, Radiation absorption, Penetrative convection, Magnetic field, Heat source

Abstract

This article reports a linear stability analysis of the onset of convection stimulated by selective absorption of radiation in a horizontal layer of magnetic nanofluid (MNF) under the impact of an external magnetic field. The Chebyshev pseudospectral method is utilized to obtain the numerical solution for water-based magnetic nanofluids (MNFs). The confining boundaries of the magnetic nanofluid layer are considered to be rigid–rigid, rigid–free, and free–free. The results are derived for two different conditions, viz., when the system is heated from the below and when the system is heated from the above. It is observed that an increase in the value of the Langevin parameter , diffusivity ratio  and a decrease in the value of nanofluid Lewis number , the parameter  which represents the impact of selective absorption of radiation and modified diffusivity ratio  delays the onset of MNF convection for both the two configurations. Moreover, as the value of concentration Rayleigh number  increases, the convection commences easily when the system is heated from the below, whereas the onset of MNF convection gets delayed as the system is heated from the above.

References

R. Krishnamurti, “Convection induced by selective absorption of radiation: A laboratory model of conditional instability,” Dyn. of Atm. And Ocean, vol. 27, no. 1-4, pp. 367-382, 1998, doi: 10.1016/s0377-0265(97)00020-1.

A. A. Hill, “Penetrative convection induced by the absorption of radiation with a nonlinear internal heat source,” Dyn. of Atm. And Ocean, vol. 38, no. 1, pp. 57-67, 2004, doi: 10.1016/j.dynatmoce.2004.03.002.

B. Straughan, “Global stability for convection induced by absorption of radiation,” Dyn. of Atm. And Ocean, vol. 35, no. 4, pp. 351-361, 2002, doi: 10.1016/S0377-0265(02)00051-9.

A. A. Hill, “Convection due to the selective absorption of radiation in a porous medium,” Continuum Mech. Thermodyn., vol. 15, no. 5, pp. 451-462, 2003, doi: 10.1007/s00161-003-0125-5.

M. H. Chang, “Stability of convection induced by selective absorption of radiation in a fluid overlying a porous layer,” Phys. Fluids, vol. 16, no. 10, pp. 3690-3698, 2004, doi: 10.1063/1.1789551.

A. A. Hill, “Convection induced by the selective absorption of radiation for the Brinkman model,” Continuum Mech. Thermodyn., vol. 16, no. 1-2, pp. 43-52, 2004, doi: 10.1007/s00161-003-0140-6.

A. J. Harfash, “Three dimensional simulations and stability analysis for convection induced by absorption of radiation,” Int. J. Numer. Methods Heat Fluid Flow, vol. 25, no. 4, pp. 810-824, 2015, doi: 10.1108/HFF-08-2013-0250.

J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transfer, vol. 128, no. 3, pp. 240-250, 2006, doi: 10.1115/1.2150834.

D. Y. Tzou, “Instability of nanofluids in natural convection,” J. Heat Transfer, vol. 130, no. 7, 2008, doi: 10.1115/1.2908427.

D. A. Nield, and A. V. Kuznetsov, “The onset of convection in a horizontal nanofluid layer of finite depth,” Eur. J. Mech. B. Fluids, vol. 29, no. 3, pp. 217-223, 2010, doi: 10.1016/j.euromechflu.2010.02.003.

D. A. Nield, and A. V. Kuznetsov, “The onset of convection in a horizontal nanofluid layer of finite depth: A revised model,” Int. J. Heat Mass Transfer, vol. 77, pp. 915-918, 2014, doi: 10.1016/j.ijheatmasstransfer.2014.06.020.

D. A. Nield, and A. V. Kuznetsov, “Thermal instability in a porous medium layer saturated by a nanofluid,” Int. J. Heat Mass Transfer, vol. 52, no. 25-26, pp. 5796-5801, 2009, doi: 10.1016/j.ijheatmasstransfer.2009.07.023.

D. Yadav, G. S. Agrawal, and R. Bhargava, “Thermal instability of rotating nanofluid layer,” Int. J. Eng. Sci., vol. 49, no. 11, pp. 1171-1184, 2011, doi: 10.1016/j.ijengsci.2011.07.002.

D. Yadav, R. Bhargava, and G. S. Agrawal, “Boundary and internal heat source effects on the onset of Darcy-Brinkman convection in a porous layer saturated by nanofluid,” Int. J. Therm. Sci., vol. 60, pp. 244-254, 2012, doi: 10.1016/j.ijthermalsci.2012.05.011.

D. A. Nield, and A. V. Kuznetsov, “The onset of convection in an internally heated nanofluid layer,” J. Heat Transfer, vol. 136, no. 1, 2014, doi: 10.1115/1.4025048.

K. Zaimi, A. Ishak, and I. Pop, “Boundary layer flow and heat transfer over a nonlinearly permeable stretching/shrinking sheet in a nanofluid,” Sci. Rep., vol. 4, no. 1, pp. 1-8, 2014, doi: 10.1038/srep04404.

R. A. Hamid, R. Nazar, and I. Pop, “Non-alignment stagnation-point flow of a nanofluid past a permeable stretching/shrinking sheet: Buongiorno's model,” Sci. Rep., vol. 5, no. 1, pp. 14640-14640, 2015, doi: 10.1038/srep14640.

A. I. Alsabery, M. A. Sheremet, A. J. Chamkha, and I. Hashim, “MHD convective heat transfer in a discretely heated square cavity with conductive inner block using two-phase nanofluid model,” Sci. Rep., vol. 8, no. 1, pp. 1-23, 2018, doi: 10.1038/s41598-018-25749-2.

M. Sheikholeslami, I. Khan, and I. Tlili, “Non-equilibrium Model for Nanofluid Free Convection Inside a Porous Cavity Considering Lorentz Forces,” Sci. Rep., vol. 8, no. 1, pp. 1-13, 2018, doi: 10.1038/s41598-018-33079-6.

D. Yadav, “The onset of longitudinal convective rolls in a porous medium saturated by a nanofluid with non-uniform internal heating and chemical reaction,” J. Therm. Anal. Calorim., vol. 135, no. 2, pp. 1107-1117, 2019, doi: 10.1007/s10973-018-7748-z.

G. C. Rana, H. Saxena, and P. K. Gautam, “The Onset of Electrohydrodynamic Instability in a Couple-Stress Nano-fluid Saturating a Porous Medium: Brinkman Mode | Revista Cubana de Física,” Rev. Cubana Fis., vol. 36, no. 1, pp. 37-45, 2019.

D. Yadav, and J. Wang, “Convective Heat Transport in a Heat Generating Porous Layer Saturated by a Non-Newtonian Nanofluid,” Heat Transfer Eng., vol. 40, no. 16, pp. 1363-1382, 2019, doi: 10.1080/01457632.2018.1470298.

A. Alhashash, “Natural convection of Nanoliquid from a Cylinder in Square Porous Enclosure using Buongiorno’s Two-phase Model,” Sci. Rep., vol. 10, no. 1, pp. 1-12, 2020, doi: 10.1038/s41598-019-57062-x.

D. Yadav, “Numerical solution of the onset of Buoyancy‐driven nanofluid convective motion in an anisotropic porous medium layer with variable gravity and internal heating,”Heat Transfer, vol. 49, no. 3, pp. 1170-1191, 2020.

O. Mahian, L. Kolsi, M. Amani, P. Estellé, G. Ahmadi, C. Kleinstreuer, J. S. Marshall, M. Siavashi, R. A. Taylor, H. Niazmand, S. Wongwises, T. Hayat, A. Kolanjiyil, A. Kasaeian, and I. Pop, "Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory," Elsevier B.V., 2019, pp. 1-48.

O. Mahian, L. Kolsi, M. Amani, P. Estellé, G. Ahmadi, C. Kleinstreuer, J. S. Marshall, R. A. Taylor, E. Abu-Nada, S. Rashidi, H. Niazmand, S. Wongwises, T. Hayat, A. Kasaeian, and I. Pop, "Recent advances in modeling and simulation of nanofluid flows—Part II: Applications," Elsevier B.V., 2019, pp. 1-59.

U. Gupta, J. Ahuja, and R. K. Wanchoo, “Magneto convection in a nanofluid layer,” Int. J. Heat Mass Transfer, vol. 64, pp. 1163-1171, 2013, doi: 10.1016/j.ijheatmasstransfer.2013.05.035.

D. Yadav, R. Bhargava, and G. S. Agrawal, “Thermal instability in a nanofluid layer with a vertical magnetic field,” J. Eng. Math., vol. 80, pp. 147-164, 2013, doi: 10.1007/s10665-012-9598-1.

D. Yadav, “The effect of pulsating throughflow on the onset of magneto convection in a layer of nanofluid confined within a Hele-Shaw cell,” Proc. Inst. Mech. Eng., Part E, vol. 233, no. 5, pp. 1074-1085, 2019, doi: 10.1177/0954408919836362.

L. Kolsi, A. Abidi, M. N. Borjini, and H. B. Aïssia, “The effect of an external magnetic field on the entropy generation in three-dimensional natural convection,” Therm. Sci., vol. 14, no. 2, pp. 341-352, 2010, doi: 10.2298/TSCI1002341K.

C. Maatki, L. Kolsi, H. F. Oztop, A. Chamkha, M. N. Borjini, H. B. Aissia, and K. Al-Salem, “Effects of magnetic field on 3D double diffusive convection in a cubic cavity filled with a binary mixture,” Int. Commun. Heat Mass Transfer, vol. 49, pp. 86-95, 2013, doi: 10.1016/j.icheatmasstransfer.2013.08.019.

M. A. Ismael, M. A. Mansour, A. J. Chamkha, and A. M. Rashad, “Mixed convection in a nanofluid filled-cavity with partial slip subjected to constant heat flux and inclined magnetic field,” J. Magn. Magn. Mater., vol. 416, pp. 25-36, 2016, doi: 10.1016/j.jmmm.2016.05.006.

M. M. Rashidi, M. Nasiri, M. Khezerloo, and N. Laraqi, “Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls,” J. Magn. Magn. Mater., vol. 401, pp. 159-168, 2016, doi: 10.1016/j.jmmm.2015.10.034.

D. Yadav, R. Bhargava, G. S. Agrawal, G. S. Hwang, J. Lee, and M. C. Kim, “Magneto-convection in a rotating layer of nanofluid,” Asia-Pac. J. Chem. Eng., vol. 9, no. 5, pp. 663-677, 2014, doi: 10.1002/apj.1796.

D. Yadav, C. Kim, J. Lee, and H. H. Cho, “Influence of magnetic field on the onset of nanofluid convection induced by purely internal heating,” Comput. Fluids, vol. 121, pp. 26-36, 2015, doi: 10.1016/j.compfluid.2015.07.024.

M. Sheikholeslami, “CuO-water nanofluid free convection in a porous cavity considering Darcy law,” Eur. Phys. J. Plus, vol. 132, no. 1, pp. 1-11, 2017, doi: 10.1140/epjp/i2017-11330-3.

I. Nkurikiyimfura, Y. Wang, and Z. Pan, "Heat transfer enhancement by magnetic nanofluids - A review," Elsevier Ltd, 2013, pp. 548-561.

B. A. Finlayson, “Convective instability of ferromagnetic fluids,” J. Fluid Mech., vol. 40, no. 4, pp. 753-767, 1970, doi: 10.1017/S0022112070000423.

A. Mahajan, and M. Arora, “Convection in Magnetic Nanofluids,” J. Nanofluids, vol. 2, no. 2, pp. 147-156, 2013, doi: 10.1166/jon.2013.1045.

A. Mahajan, and M. K. Sharma, “Convection in magnetic nanofluids in porous media,” J. Porous Media, vol. 17, no. 5, pp. 439-455, 2014, doi: 10.1615/JPorMedia.v17.i5.60.

M. Sheikholeslami, M. M. Rashidi, T. Hayat, and D. D. Ganji, “Free convection of magnetic nanofluid considering MFD viscosity effect,” J. Mol. Liq., vol. 218, pp. 393-399, 2016, doi: 10.1016/j.molliq.2016.02.093.

M. Sheikholeslami, "Numerical simulation of magnetic nanofluid natural convection in porous media," Elsevier B.V., 2017, pp. 494-503.

M. S. Kandelousi, “Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition,” Eur. Phys. J. Plus, vol. 129, no. 11, pp. 1-12, 2014, doi: 10.1140/epjp/i2014-14248-2.

M. Sheikholeslami, and M. M. Rashidi, “Ferrofluid heat transfer treatment in the presence of variable magnetic field,” Eur. Phys. J. Plus, vol. 130, no. 6, pp. 1-12, 2015, doi: 10.1140/epjp/i2015-15115-4.

A. Mahajan, and M. K. Sharma, “Penetrative convection in magnetic nanofluids via internal heating,” Phys. Fluids, vol. 29, no. 3, pp. 034101-034101, 2017, doi: 10.1063/1.4977091.

A. Mahajan, and M. K. Sharma, “The onset of penetrative convection stimulated by internal heating in a magnetic nanofluid saturating a rotating porous medium,” Can. J. Phys., vol. 96, no. 8, pp. 898-911, 2018, doi: 10.1139/cjp-2017-0640.

A. Mahajan, and M. K. Sharma, “The onset of convection in a magnetic nanofluid layer with variable gravity effects,” Appl. Math. Comput., vol. 339, pp. 622-635, 2018, doi: 10.1016/j.amc.2018.07.062.

A. Mahajan, and M. K. Sharma, “Penetrative convection due to absorption of radiation in a magnetic nanofluid saturated porous layer,” Studia Geotechnica et Mechanica, vol. 41, no. 3, pp. 129-142, 2019, doi: 10.2478/sgem-2019-0018.

R. E. Rosensweig, Ferrohydrodynamics: Courier Corporation, 2013.

P. N. Kaloni, and J. X. Lou, “Convective instability of magnetic fluids,” Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top, vol. 70, no. 2, pp. 12-12, 2004, doi: 10.1103/PhysRevE.70.026313.

M. I. Shliomis, and B. L. Smorodin, “Convective instability of magnetized ferrofluids,” J. Magn. Magn. Mater., vol. 252, no. 1-3 SPEC. ISS., pp. 197-202, 2002, doi: 10.1016/S0304-8853(02)00712-6.

B. Straughan, The Energy Method, Stability, and Nonlinear Convection, New York, NY: Springer New York, 2004.

U. Gupta, J. Sharma, and V. Sharma, “Instability of binary nanofluids with magnetic field,” Appl. Math. Mech., vol. 36, no. 6, pp. 693-706, 2015, doi: 10.1007/s10483-015-1941-6.

Downloads

Published

2021-03-25

How to Cite

[1]
A. Mahajan and M. K. Sharma, “The onset of magnetic nanofluid convection because of selective absorption of radiation”, J. Mech. Eng. Sci., vol. 15, no. 1, pp. 7918–7935, Mar. 2021.

Similar Articles

<< < 10 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.