Convective heat transfer and fluid flow characteristics in fin and oval-tube heat exchanger

Authors

  • Y. Abdoune Laboratoire des Carburants Gazeux et Environnement (LCGE), Faculté de Génie Mécanique, Université des Science et de Technologie d’Oran Mohamed Boudiaf, 31000, Oran, Algeria
  • D. Sahel Laboratoire des Carburants Gazeux et Environnement (LCGE), Faculté de Génie Mécanique, Université des Science et de Technologie d’Oran Mohamed Boudiaf, 31000, Oran, Algeria
  • R. Benzeguir Laboratoire des Carburants Gazeux et Environnement (LCGE), Faculté de Génie Mécanique, Université des Science et de Technologie d’Oran Mohamed Boudiaf, 31000, Oran, Algeria
  • K. Alem Laboratoire des Carburants Gazeux et Environnement (LCGE), Faculté de Génie Mécanique, Université des Science et de Technologie d’Oran Mohamed Boudiaf, 31000, Oran, Algeria

DOI:

https://doi.org/10.15282/jmes.15.2.2021.01.0626

Keywords:

Heat transfer, oval tube, Nusselt number, Friction factor, correlations

Abstract

The forced convective heat transfer behavior of a turbulent air flow, steady and Newtonian over a fin and oval-tube heat exchanger has been examined numerically. Where, the effect of the tube tilt angle (α) on the heat transfer coefficient and the friction factor was tested. The inclination angle of the oval-tubes going from 0° (Baseline case) to 90° with a step of 10°. The fluid flows and heat transfer characteristics are presented for Reynolds numbers ranging from 3.000 to 12.000. All investigations are carried out with the help of the CFD ANSYS Fluent. Heat transfer coefficient results in the term of the Nusselt number are validated with the available experimental data and a maximum deviation of 9 % is observed. Reasonable agreement is found. The obtained results show that the tube's inclination angle of 20° is the best design which significantly removes the hot spots behind the tubes, thus giving an increase in the heat transfer coefficient of 13 % compared to the baseline case. In addition, useful correlations are developed to predict Nusselt number and friction factor in the fin and oval-tube heat exchanger.

References

B. Anoop, C. Balaji, and K. Velusamy, “A characteristic correlation for heat transfer over serrated finned tubes,” Ann. Nucl. Energy, vol. 85, pp. 1052–1065, 2015, doi: 10.1016/j.anucene.2015.07.025.

H. Huisseune, S. De Schampheleire, B. Ameel, and M. De Paepe, “Comparison of metal foam heat exchangers to a finned heat exchanger for low Reynolds number applications,” Int. J. Heat Mass Transf., vol. 89, pp. 1–9, 2015, doi: 10.1016/j.ijheatmasstransfer.2015.05.013.

D. Sahel, H. Ameur, and Y. Kamla, “A numerical study of fluid flow and heat transfer over a fin and flat tube heat exchangers with complex vortex generators,” Eur. Phys. J. Appl. Phys., vol. 78, no. 3, pp. 34805, 2017, doi: 10.1051/epjap/2017170066.

D. Sahel, R. Benzeguir, and T. Baki, “Heat transfer enhancement in a fin and tube heat exchanger with isosceles vortex generators,” Mechanics., vol. 21, no. 6, pp. 457-464, 2015, doi: 10.5755/j01.mech.21.6.12240.

S. K. Sarangi and D. P. Mishra, “Effect of winglet location on heat transfer of a fin-and-tube heat exchanger,” Appl. Therm. Eng., vol. 116, pp. 528–540, 2017, doi: 10.1016/j.applthermaleng.2017.01.106.

T. Välikangas, S. Singh, K. Sørensen, and T. Condra, “Fin-and-tube heat exchanger enhancement with a combined herringbone and vortex generator design,” Int. J. Heat Mass Transf., vol. 118, pp. 602–616, 2018, doi: 10.1016/j.ijheatmasstransfer.2017.11.006.

L. O. Salviano, D. J. Dezan, and J. I. Yanagihara, “Thermal-hydraulic performance optimization of inline and staggered fin-tube compact heat exchangers applying longitudinal vortex generators,” Appl. Therm. Eng., vol. 95, pp. 311–329, 2016, doi: 10.1016/j.applthermaleng.2015.11.069.

M. J. Li, W. J. Zhou, J. F. Zhang, J. F. Fan, Y. L. He, and W. Q. Tao, “Heat transfer and pressure performance of a plain fin with radiantly arranged winglets around each tube in fin-and-tube heat transfer surface,” Int. J. Heat Mass Transf., vol. 70, pp. 734–744, 2014, doi: 10.1016/j.ijheatmasstransfer.2013.11.024.

S.-Y. Yoo, D.-S. Park, M.-H. Chung, and S.-Y. Lee, “Heat transfer enhancement for fin-tube heat exchanger using vortex generators,” KSME Int. J., vol. 16, no. 1, pp. 109–115, 2002, doi: 10.1007/BF03185161.

M. Fiebig, “Embedded vortices in internal flow: heat transfer and pressure loss enhancement,” Int. J. Heat Fluid Flow., vol. 16, no. 5, pp. 376–388, 1995, doi: 10.1016/0142-727X(95)00043-P.

Y. L. He, H. Han, W. Q. Tao, and Y. W. Zhang, “Numerical study of heat-transfer enhancement by punched winglet-type vortex generator arrays in fin-and-tube heat exchangers,” Int. J. Heat Mass Transf., vol. 55, no. 21, pp. 5449–5458, 2012, doi: 10.1016/j.ijheatmasstransfer.2012.04.059.

A. Žkauskas, “Heat Transfer from Tubes in Crossflow,” Adv. Heat Transf. Elsevier., vol. 18, pp. 87–159, 1987.

N. Katkhaw, N. Vorayos, T. Kiatsiriroat, Y. Khunatorn, D. Bunturat, and A. Nuntaphan, “Heat transfer behavior of flat plate having 45° ellipsoidal dimpled surfaces,” Case Stud. Therm. Eng., vol. 2, pp. 67–74, 2014, doi: 10.1016/j.csite.2013.12.002.

A. Horvat and B. Mavko, “Drag coefficient and stanton number behavior in fluid flow across a bundle of wing-shaped tubes,” J. Heat Transf., vol. 128, no. 9, pp. 969–973, 2006, doi: 10.1115/1.2241746.

A. Horvat, M. Leskovar, and B. Mavko, “Comparison of heat transfer conditions in tube bundle cross-flow for different tube shapes,” Int. J. Heat Mass Transf., vol. 49, no. 5, pp. 1027–1038, 2006, doi: 10.1016/j.ijheatmasstransfer.2005.09.030.

A. Horvat and B. Mavko, “Heat Transfer Conditions in Flow Across a Bundle of Cylindrical and Ellipsoidal Tubes,” Numer. Heat Transf. Part Appl., vol. 49, no. 7, pp. 699–715, 2006, doi: 10.1080/10407780500496554.

X.-Q. Wei, Y.-H. Zhang, W.-L. Hu, and L.-B. Wang, “The fluid flow and heat transfer characteristics in the channel formed by flat tube and dimpled fin,” Int. J. Therm. Sci., vol. 104, pp. 86–100, 2016, doi: 10.1016/j.ijthermalsci.2015.12.018.

N. Benarji, C. Balaji, and S. P. Venkateshan, “Unsteady fluid flow and heat transfer over a bank of flat tubes,” Heat Mass Transf., vol. 44, no. 4, p. 445, 2007, doi: 10.1007/s00231-007-0256-5.

T. L. Fullerton and N. K. Anand, “Periodically fully-developed flow and heat transfer over flat and oval tubes using a control volume finite-element method,” Numer. Heat Transf. Part Appl., vol. 57, no. 9, pp. 642–665, 2010, doi: 10.1080/10407781003744888.

M. Ishak, T. A. Tahseen, and M. Rahman, “Experimental Investigation on heat transfer and pressure drop characteristics of air flow over a staggered flat tube bank in crossflow,” Int. J. Automot Mech. Eng., vol. 7, pp. 900, 2013, doi: 10.15282/IJAME.7.2012.7.0073.

T. A. Tahseen, M. Ishak, and M. M. Rahman, “An experimental study air flow and heat transfer of air over in-line flat tube bank,” in International Conference on Mechanical Engineering Research (ICMER2013), 2013, vol. 1, p. 3.

A. Hashem-ol-Hosseini, M. Akbarpour Ghazani, and M. D. Emami, “Experimental study and numerical simulation of thermal hydraulic characteristics of a finned oval tube at different fin configurations,” Int. J. Therm. Sci., vol. 151, p. 106255, 2020, doi: 10.1016/j.ijthermalsci.2019.106255.

H. Zhu, Z. Yang, T. A. Khan, W. Li, Z. Sun, J. Du, Z. Zhang, and J. Zhou, “Thermal-hydraulic performance and optimization of tube ellipticity in a plate fin-and-tube heat exchanger,” J. Electron. Packag., vol. 141, no. 3, 2019, doi: 10.1115/1.4043482.

L. Zhao, B. Wang, R. Wang, and Z. Yang, “Aero-thermal behavior and performance optimization of rectangular finned elliptical heat exchangers with different tube arrangements,” Int. J. Heat Mass Transf., vol. 133, pp. 1196–1218, 2019, doi: 10.1016/j.ijheatmasstransfer.2018.12.138.

B. Lotfi and B. Sundén, “Development of new finned tube heat exchanger: Innovative tube-bank design and thermohydraulic performance,” Heat Transf. Eng., vol. 41, no. 14, pp. 1209–1231, 2020, doi: 10.1080/01457632.2019.1637112.

L. Tang, X. Du, J. Pan, and B. Sundén, “Air inlet angle influence on the air-side heat transfer and flow friction characteristics of a finned oval tube heat exchanger,” Int. J. Heat Mass Transf., vol. 145, p. 118702, 2019, doi: 10.1016/j.ijheatmasstransfer.2019.118702.

S. He, X. Zhou, F. Li, H. Wu, Q. Chen, and Z. Lan, “Heat and mass transfer performance of wet air flowing around circular and elliptic tube in plate fin heat exchangers for air cooling,” Heat Mass Transf., vol. 55, no. 12, pp. 3661–3673, 2019, doi: 10.1007/s00231-019-02683-1.

S. Dogan, S. Darici, and M. Ozgoren, “Numerical comparison of thermal and hydraulic performances for heat exchangers having circular and elliptic cross-section,” Int. J. Heat Mass Transf., vol. 145, pp. 118731, 2019, doi: 10.1016/j.ijheatmasstransfer.2019.118731.

C. K. Mangrulkar, A. S. Dhoble, P. K. Pant, N. Kumar, A. Gupta, and S. Chamoli, “Thermal performance escalation of cross flow heat exchanger using in-line elliptical tubes,” Exp. Heat Transf., pp. 1–26, 2019, doi: 10.1080/08916152.2019.1704946.

T. A. Tahseen, M. Ishak, and M. M. Rahman, “An experimental study of heat transfer and friction factor characteristics of finned flat tube banks with in-line tubes configurations,” in Applied Mechanics and Materials., 2014, vol. 564, pp. 197-203.

T. Kim, “Effect of longitudinal pitch on convective heat transfer in crossflow over in-line tube banks,” Ann. Nucl. Energy., vol. 57, pp. 209–215, 2013, doi: 10.1016/j.anucene.2013.01.060.

D. Sahel, H. Ameur, and M. Mellal, “Effect of tube shape on the performance of a fin and tube heat exchanger,” J. Mech. Eng. Sci., vol. 14, no. 2, pp. 6709-6718, 2020, doi: 10.15282/jmes.14.2.2020.13.0525.

D. Sahel, H. Ameur, and W. Boudaoud, “A new correlation for predicting the hydrothermal characteristics over flat tube banks,” J. Mech. Energy Eng., vol. 3, no. 3, pp. 273--280, 2019, doi: 10.30464/jmee.2019.3.3.273.

L. Baoxing and C. Zuhui, “Heat transfer and draft loss performance of air flowing across staggered banks of oval tubes fitted with rectangular fins,” J. Eng. Thermophys., vol. 4, pp. 365–371, 1982.

L. Zhao, X. Gu, L. Gao, and Z. Yang, “Numerical study on airside thermal-hydraulic performance of rectangular finned elliptical tube heat exchanger with large row number in turbulent flow regime,” Int. J. Heat Mass Transf., vol. 114, pp. 1314–1330, 2017, doi: 10.1016/j.ijheatmasstransfer.2017.06.049.

Downloads

Published

2021-06-10

How to Cite

[1]
Y. Abdoune, S. Djamel, B. Redouane, and A. Karima, “Convective heat transfer and fluid flow characteristics in fin and oval-tube heat exchanger”, J. Mech. Eng. Sci., vol. 15, no. 2, pp. 7936–7947, Jun. 2021.

Issue

Section

Article