Preparation, stability and wettability of nanofluid: A review
DOI:
https://doi.org/10.15282/jmes.14.3.2020.24.0569Keywords:
Nanofluid, preparation, contact angle, stability, dispersibilityAbstract
Nanofluids possess many advantages over conventional working fluid especially in physical, thermal and rheology properties. Nowadays, nanofluids have been applied extensively in many engineering applications in enhancing the overall performance. Preparation and characterization of nanofluids are vital as the nanomaterials have significant effects on the dispersion and stability of nanofluids. On the other hand, there is a trend to employ more than a single nanoparticle for preparing nanofluid. The hybrid nanofluid receives wide attention due to its capability in improving the thermal-physical properties of single phase nanofluids. In this paper, the flow of formulating nanofluid from preparation method, characterization, wettability analysis and stability techniques are discussed comprehensively. Furthermore, the challenges for obtaining stable suspension and wettability behaviour of nanofluids are discussed as well. The main objective when preparing the nanofluids is to obtain a well-dispersed nanoparticle into the base fluid. Based on the literature review, the impact of surfactant on the stability and the correlation between nanofluids wettability and thermal-physical properties of nanofluids have great potential to discover. There are some aspects that can be considered to expand the knowledge of nanofluids such as the composition ratio of hybrid nanofluid with regards to achieving the best stability and wettability study of hybrid nanofluid with and without surfactant in the suspension. Therefore, a lot of research should be conducted in order to explore the behaviour of nanofluid and the effect of various surfactants in terms of stability as well as its thermal and viscosity effect on the engineering applications.
References
S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME International Mechanical Engineering Congress and Exposition, vol. 66, no. March, pp. 99–105, 1995, doi: 10.1115/1.1532008.
M. I. Pryazhnikov, A. V. Minakov, V. Y. Rudyak, and D. V. Guzei, “Thermal conductivity measurements of nanofluids,” International Journal of Heat and Mass Transfer, vol. 104, pp. 1275–1282, 2017, doi: 10.1016/j.ijheatmasstransfer.2016.09.080.
R. Rahmayeni, Z. Zulhadjri, Y. Stiadi, A. Harry, and S. Arief, “Synthesis of ZnO/ZnFe2O4 nanocomposites in organic-free media and their photocatalytic activity under natural sunlight,” Journal of Mechanical Engineering and Sciences, vol. 14(2), pp. 6801-6810, 2020, doi: 10.15282/jmes.14.2.2020.20.0532.
W. H. Azmi, S. N. M. Zainon, K. A. Hamid, and R. Mamat, “A review on thermo-physical properties and heat transfer applications of single and hybrid metal oxide nanofluids,” Journal of Mechanical Engineering and Sciences, vol. 13(2), pp. 5182-5211, 2019, doi: 10.15282/jmes.13.2.2019.28.0425.
D. K. Devendiran and V. A. Amirtham, “A review on preparation, characterization, properties and applications of nanofluids,” Renewable and Sustainable Energy Reviews, vol. 60. pp. 21–40, 2016, doi: 10.1016/j.rser.2016.01.055.
M. Hosokawa, K. Nogi, M. Naito, and T. Yokoyama, Nanoparticle Technology Handbook. 2012.
J. Lin and H. Yang, “A review on the flow instability of nanofluids,” Applied Mathematics and Mechanics, vol. 40, no. 9, pp. 1227–1238, 2019, doi: 10.1007/s10483-019-2521-9.
N. Ali, J. A. Teixeira, and A. Addali, “A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties,” Journal of Nanomaterials. 2018, doi: 10.1155/2018/6978130.
H. Farzaneh, A. Behzadmehr, M. Yaghoubi, A. Samimi, and S. M. H. Sarvari, “Stability of nanofluids: Molecular dynamic approach and experimental study,” Energy Conversion and Management, vol. 111, pp. 1–14, 2016, doi: 10.1016/j.enconman.2015.12.044.
L. Syam Sundar, M. K. Singh, M. C. Ferro, and A. C. M. Sousa, “Experimental investigation of the thermal transport properties of graphene oxide/Co3O4 hybrid nanofluids,” International Communications in Heat and Mass Transfer, vol. 84, pp. 1–10, 2017, doi: 10.1016/j.icheatmasstransfer.2017.03.001.
S. S. Chatha, A. Pal, and T. Singh, “Performance evaluation of aluminium 6063 drilling under the influence of nanofluid minimum quantity lubrication,” Journal of Cleaner Production, vol. 137, pp. 537–545, 2016, doi: 10.1016/j.jclepro.2016.07.139.
M. Kang, J. W. Lee, and Y. T. Kang, “Reduction of liquid pumping power by nanoscale surface coating,” International Journal of Refrigeration, vol. 71, pp. 8–17, 2016, doi: 10.1016/j.ijrefrig.2016.08.003.
H. T. Phan, N. Caney, P. Marty, S. Colasson, and J. Gavillet, “Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism,” International Journal of Heat and Mass Transfer, vol. 52, no. 23-24, pp. 5459–5471 2009, doi: 10.1016/j.ijheatmasstransfer.2009.06.032.
I. Kustiningsih, Sutinah, M. Stefirizky, Slamet, and W. W. Purwanto, “Optimization of TiO2 nanowires synthesis using hydrothermal method for hydrogen production,” Journal of Mechanical Engineering and Sciences, vol. 12(3), pp. 3876-3887, 2018, doi: 10.15282/jmes.12.3.2018.9.0340.
V. Fuskele and R. M. Sarviya, “Recent developments in Nanoparticles Synthesis, Preparation and Stability of Nanofluids,” in Materials Today: Proceedings, 2017, vol. 4, no. 2, pp. 4049–4060, doi: 10.1016/j.matpr.2017.02.307.
B. Munkhbayar, M. R. Tanshen, J. Jeoun, H. Chung, and H. Jeong, “Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics,” Ceramics International, vol. 39, no. 6, pp. 6415–6425, 2013, doi: 10.1016/j.ceramint.2013.01.069.
G. J. Lee, C. K. Kim, M. K. Lee, C. K. Rhee, S. Kim, and C. Kim, “Thermal conductivity enhancement of ZnO nanofluid using a one-step physical method,” in Thermochimica Acta, 2012, vol. 542, pp. 24–27, doi: 10.1016/j.tca.2012.01.010.
S. Aberoumand and A. Jafarimoghaddam, “Experimental study on synthesis, stability, thermal conductivity and viscosity of Cu–engine oil nanofluid,” Journal of the Taiwan Institute of Chemical Engineers, vol. 71, pp. 315–322, 2017, doi: 10.1016/j.jtice.2016.12.035.
Y. Su, L. Gong, B. Li, Z. Liu, and D. Chen, “Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning,” International Journal of Advanced Manufacturing Technology, vol. 83, no. 9–12, pp. 2083–2089, 2016, doi: 10.1007/s00170-015-7730-x.
S. Suresh, K. P. Venkitaraj, P. Selvakumar, and M. Chandrasekar, “Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 388, no. 1–3, pp. 41–48, 2011, doi: 10.1016/j.colsurfa.2011.08.005.
D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, and H. Li, “Dispersion behavior and thermal conductivity characteristics of Alinf2/infOinf3/inf-Hinf2/infO nanofluids,” Current Applied Physics, vol. 9, no. 1, 2009, doi: 10.1016/j.cap.2007.12.008.
Y. H. Hung, W. P. Wang, Y. C. Hsu, and T. P. Teng, “Performance evaluation of an air-cooled heat exchange system for hybrid nanofluids,” Experimental Thermal and Fluid Science, vol. 81, pp. 43–55, 2017, doi: 10.1016/j.expthermflusci.2016.10.006.
P. Gurav, S. Naik, B. A. Bhanvase, D. V Pinjari, S. H. Sonawane, and M. Ashokkumar, “Heat transfer intensification using polyaniline based nanofluids: Preparation and application,” Chemical Engineering and Processing: Process Intensification, vol. 95, pp. 195–201, 2015, doi: 10.1016/j.cep.2015.06.010.
K. Cacua, R. Buitrago-Sierra, B. Herrera, F. Chejne, and E. Pabón, “Influence of different parameters and their coupled effects on the stability of alumina nanofluids by a fractional factorial design approach,” Advanced Powder Technology, pp. 37–44, 2017, doi: 10.1016/j.apt.2017.07.009.
Y. Wang et al., “Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids,” Tribology International, vol. 99, pp. 198–210, 2016, doi: 10.1016/j.triboint.2016.03.023.
P. Sharma, B. S. Sidhu, and J. Sharma, “Investigation of effects of nanofluids on turning of AISI D2 steel using minimum quantity lubrication,” Journal of Cleaner Production, vol. 108, pp. 72–79, 2015, doi: 10.1016/j.jclepro.2015.07.122.
C. Mao, J. Zhang, Y. Huang, H. Zou, X. Huang, and Z. Zhou, “Investigation on the effect of nanofluid parameters on MQL grinding,” Materials and Manufacturing Processes, vol. 28, no. 4, pp. 436–442, 2013, doi: 10.1080/10426914.2013.763970.
X. Zhang et al., “Lubricating property of MQL grinding of Al2O3/SiC mixed nanofluid with different particle sizes and microtopography analysis by cross-correlation,” Precision Engineering, vol. 47, pp. 532–545, 2017, doi: 10.1016/j.precisioneng.2016.09.016.
E. B. Elcioglu, A. Guvenc Yazicioglu, A. Turgut, and A. S. Anagun, “Experimental study and Taguchi Analysis on alumina-water nanofluid viscosity,” Applied Thermal Engineering, vol. 128, pp. 973–981, 2018, doi: 10.1016/j.applthermaleng.2017.09.013.
T. T. Baby and S. Ramaprabhu, “Synthesis and nanofluid application of silver nanoparticles decorated graphene,” Journal of Materials Chemistry, vol. 21, no. 26, p. 9702, 2011, doi: 10.1039/c0jm04106h.
S. Suresh, K. P. Venkitaraj, P. Selvakumar, and M. Chandrasekar, “Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer,” Experimental Thermal and Fluid Science, vol. 38, pp. 54–60, 2012, doi: 10.1016/j.expthermflusci.2011.11.007.
B. Wei, C. Zou, X. Yuan, and X. Li, “Thermo-physical property evaluation of diathermic oil based hybrid nanofluids for heat transfer applications,” International Journal of Heat and Mass Transfer, vol. 107, pp. 281–287, 2017, doi: 10.1016/j.ijheatmasstransfer.2016.11.044.
D. Setti, M. K. Sinha, S. Ghosh, and P. Venkateswara Rao, “Performance evaluation of Ti-6Al-4V grinding using chip formation and coefficient of friction under the influence of nanofluids,” International Journal of Machine Tools and Manufacture, vol. 88, pp. 237–248, 2015, doi: 10.1016/j.ijmachtools.2014.10.005.
M. Amrita, R. R. Srikant, and A. V Sitaramaraju, “Performance evaluation of nanographite-based cutting fluid in machining process,” Materials and Manufacturing Processes, vol. 29, no. 5, pp. 600–605, 2014, doi: 10.1080/10426914.2014.893060.
Y. Muthusamy, K. Kadirgama, M. M. Rahman, D. Ramasamy, and K. V Sharma, “Wear analysis when machining AISI 304 with ethylene glycol/TIO2 nanoparticle-based coolant,” International Journal of Advanced Manufacturing Technology, vol. 82, no. 1–4, pp. 327–340, 2016, doi: 10.1007/s00170-015-7360-3.
R. Agarwal, K. Verma, N. K. Agrawal, R. K. Duchaniya, and R. Singh, “Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids,” Applied Thermal Engineering, vol. 102, pp. 1024–1036, 2016, doi: 10.1016/j.applthermaleng.2016.04.051.
S. S. Khaleduzzaman et al., “Experimental analysis of energy and friction factor for titanium dioxide nanofluid in a water block heat sink,” International Journal of Heat and Mass Transfer, vol. 115, pp. 77–85, 2017, doi: 10.1016/j.ijheatmasstransfer.2017.08.001.
M. Amrita, R. Srikant, A. Sitaramaraju, M. Prasad, and P. V. Krishna, “Experimental investigations on influence of mist cooling using nanofluids on machining parameters in turning AISI 1040 steel,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 227, no. 12, pp. 1334–1346, 2013, doi: 10.1177/1350650113491934.
A. A. Minea, “Hybrid nanofluids based on Al2O3, TiO2 and SiO2: Numerical evaluation of different approaches,” International Journal of Heat and Mass Transfer, vol. 104, pp. 852–860, 2017, doi: 10.1016/j.ijheatmasstransfer.2016.09.012.
R. Padmini, P. Vamsi Krishna, and G. Krishna Mohana Rao, “Effectiveness of vegetable oil based nanofluids as potential cutting fluids in turning AISI 1040 steel,” Tribology International, vol. 94, pp. 490–501, 2016, doi: 10.1016/j.triboint.2015.10.006.
A. B. Kasaeian, “Convection Heat Transfer Modeling of Ag Nanofluid Using Different Viscosity Theories,” IIUM Engineering Journal, vol. 13, no. 1, pp. 1–12, 2012.
M. S. Najiha, M. M. Rahman, and K. Kadirgama, “Performance of water-based TiO2 nanofluid during the minimum quantity lubrication machining of aluminium alloy, AA6061-T6,” Journal of Cleaner Production, vol. 135, pp. 1623–1636, 2016, doi: 10.1016/j.jclepro.2015.12.015.
W. T. Huang, D. H. Wu, S. P. Lin, and W. S. Liu, “A combined minimum quantity lubrication and MWCNT cutting fluid approach for SKD 11 end milling,” International Journal of Advanced Manufacturing Technology, vol. 84, no. 5–8, pp. 1697–1704, 2016, doi: 10.1007/s00170-015-7770-2.
M. A. Mahboob Ali, A. I. Azmi, A. N. Mohd Khalil, and K. W. Leong, “Experimental study on minimal nanolubrication with surfactant in the turning of titanium alloys,” International Journal of Advanced Manufacturing Technology, vol. 92, no. 1–4, pp. 117–127, 2017, doi: 10.1007/s00170-017-0133-4.
R. T. Wang and J. C. Wang, “Intelligent dimensional and thermal performance analysis of Al2O3 nanofluid,” Energy Conversion and Management, vol. 138, pp. 686–697, 2017, doi: 10.1016/j.enconman.2017.02.010.
A. M. Tiara, S. Chakraborty, I. Sarkar, S. K. Pal, and S. Chakraborty, “Synthesis and characterization of Zn-Al layered double hydroxide nanofluid and its application as a coolant in metal quenching,” Applied Clay Science, vol. 143, pp. 241–249, 2017, doi: 10.1016/j.clay.2017.03.028.
S. Al-Anssari, M. Arif, S. Wang, A. Barifcani, and S. Iglauer, “Stabilising nanofluids in saline environments,” Journal of Colloid and Interface Science, vol. 508, pp. 222–229, 2017, doi: 10.1016/j.jcis.2017.08.043.
N. Saravanakumar, L. Prabu, M. Karthik, and A. Rajamanickam, “Experimental analysis on cutting fluid dispersed with silver nano particles,” Journal of Mechanical Science and Technology, vol. 28, no. 2, pp. 645–651, 2014, doi: 10.1007/s12206-013-1192-6.
S. Chakraborty, I. Sarkar, K. Haldar, S. K. Pal, and S. Chakraborty, “Synthesis of Cu-Al layered double hydroxide nanofluid and characterization of its thermal properties,” Applied Clay Science, vol. 107, pp. 98–108, 2015, doi: 10.1016/j.clay.2015.01.009.
S. Vafaei, D. Wen, and T. Borca-Tasciuc, “Nanofluid surface wettability through asymptotic contact angle,” Langmuir, vol. 27, no. 6, pp. 2211–2218, 2011, doi: 10.1021/la104254a.
J. S. Coursey and J. Kim, “Nanofluid boiling: The effect of surface wettability,” International Journal of Heat and Fluid Flow, vol. 29, no. 6, pp. 1577–1585, 2008, doi: 10.1016/j.ijheatfluidflow.2008.07.004.
F. Zhang and A. M. Jacobi, “Metal surface wettability manipulation by nanoparticle deposition during nanofluid boiling,” in ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, 2015, doi: 10.1115/ICNMM2015-48687.
A. B. Andhare and A. R. Roja, “Properties of Dispersion of Multi Walled Carbon Nano Tubes as Cutting Fluid,” Tribology Transactions, vol. 59, no. 4, pp. 1–32, 2016, doi: 10.1080/10402004.2015.1102369.
S. Al-Anssari, M. Arif, S. Wang, A. Barifcani, M. Lebedev, and S. Iglauer, “Wettability of nanofluid-modified oil-wet calcite at reservoir conditions,” Fuel, vol. 211, pp. 405–414, 2018, doi: 10.1016/j.fuel.2017.08.111.
K.-H. Park, B. Ewald, and P. Y. Kwon, “Effect of Nano-Enhanced Lubricant in Minimum Quantity Lubrication Balling Milling,” Journal of Tribology, vol. 133, no. 3, p. 031803, 2011, doi: 10.1115/1.4004339.
J. M. Wu and J. Zhao, “A review of nanofluid heat transfer and critical heat flux enhancement - Research gap to engineering application,” Progress in Nuclear Energy, vol. 66, pp. 13–24, 2013, doi: 10.1016/j.pnucene.2013.03.009.
A. Uysal, “Investigation of flank wear in MQL milling of ferritic stainless steel by using nano graphene reinforced vegetable cutting fluid,” Industrial Lubrication and Tribology, vol. 68, no. 4, pp. 446–451, 2016, doi: 10.1108/ILT-10-2015-0141.
J. H. Lee et al., “Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles,” International Journal of Heat and Mass Transfer, vol. 51, no. 11–12, pp. 2651–2656, 2008, doi: 10.1016/j.ijheatmasstransfer.2007.10.026.
M. Sayuti, A. A. D. Sarhan, T. Tanaka, M. Hamdi, and Y. Saito, “Cutting force reduction and surface quality improvement in machining of aerospace duralumin AL-2017-T4 using carbon onion nanolubrication system,” International Journal of Advanced Manufacturing Technology, vol. 65, no. 9–12, pp. 1493–1500, 2013, doi: 10.1007/s00170-012-4273-2.
E. Dardan, M. Afrand, and A. H. Meghdadi Isfahani, “Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power,” Applied Thermal Engineering, vol. 109, pp. 524–534, 2016, doi: 10.1016/j.applthermaleng.2016.08.103.
S. K. Verma, A. K. Tiwari, and D. S. Chauhan, “Experimental evaluation of flat plate solar collector using nanofluids,” Energy Conversion and Management, vol. 134, pp. 103–115, 2017, doi: 10.1016/j.enconman.2016.12.037.
M. Sayuti, O. M. Erh, A. A. D. Sarhan, and M. Hamdi, “Investigation on the morphology of the machined surface in end milling of aerospace AL6061-T6 for novel uses of SiO2 nanolubrication system,” Journal of Cleaner Production, vol. 66, pp. 655–663, 2014, doi: 10.1016/j.jclepro.2013.11.058.
M. Chandrasekar, S. Suresh, and A. Chandra Bose, “Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid,” Experimental Thermal and Fluid Science, vol. 34, no. 2, pp. 210–216, 2010, doi: 10.1016/j.expthermflusci.2009.10.022.
D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, and H. Li, “Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids,” Current Applied Physics, vol. 9, no. 1, pp. 131–139, 2009, doi: 10.1016/j.cap.2007.12.008.
J. Sarkar, P. Ghosh, and A. Adil, “A review on hybrid nanofluids: Recent research, development and applications,” Renewable and Sustainable Energy Reviews, vol. 43. pp. 164–177, 2015, doi: 10.1016/j.rser.2014.11.023.
L. S. Sundar, K. V Sharma, M. K. Singh, and A. C. M. Sousa, “Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – A review,” Renewable and Sustainable Energy Reviews, vol. 68, pp. 185–198, 2017, doi: 10.1016/j.rser.2016.09.108.
Y. Hwang et al., “Stability and thermal conductivity characteristics of nanofluids,” Thermochimica Acta, vol. 455, no. 1–2, pp. 70–74, 2007, doi: 10.1016/j.tca.2006.11.036.
L. Jiang, L. Gao, and J. Sun, “Production of aqueous colloidal dispersions of carbon nanotubes,” Journal of Colloid and Interface Science, vol. 260, no. 1, pp. 89–94, 2003, doi: 10.1016/S0021-9797(02)00176-5.
Y. Hwang et al., “Production and dispersion stability of nanoparticles in nanofluids,” Powder Technology, vol. 186, no. 2, pp. 145–153, 2008, doi: 10.1016/j.powtec.2007.11.020.
M. J. Assael, I. N. Metaxa, J. Arvanitidis, D. Christofilos, and C. Lioutas, “Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants,” International Journal of Thermophysics, vol. 26, no. 3, pp. 647–664, 2005, doi: 10.1007/s10765-005-5569-3.
K. Y. Leong, N. Mohd Hanafi, R. Mohd Sohaimi, and N. H. Amer, “The effect of surfactant on stability and thermal conductivity of carbon nanotube based nanofluids,” Thermal Science, vol. 20, no. 2, 2016, doi: 10.2298/TSCI130914078L.
A. N. M. Khalil, M. A. M. Ali, and A. I. Azmi, “Effect of Al2O3 Nanolubricant with SDBS on Tool Wear During Turning Process of AISI 1050 with Minimal Quantity Lubricant,” Procedia Manufacturing, vol. 2, pp. 130–134, 2015, doi: 10.1016/j.promfg.2015.07.023.
S. M. S. Murshed, K. C. Leong, and C. Yang, “Enhanced thermal conductivity of TiO2 - Water based nanofluids,” International Journal of Thermal Sciences, vol. 44, no. 4, pp. 367–373, 2005, doi: 10.1016/j.ijthermalsci.2004.12.005.
A. H. A. Al-Waeli, M. T. Chaichan, H. A. Kazem, and K. Sopian, “Evaluation and analysis of nanofluid and surfactant impact on photovoltaic-thermal systems,” Case Studies in Thermal Engineering, 2019, doi: 10.1016/j.csite.2019.100392.
W. Yu and H. Xie, “A review on nanofluids: Preparation, stability mechanisms, and applications,” Journal of Nanomaterials, vol. 2012. 2012, doi: 10.1155/2012/435873.
M. Baghbanzadeh, A. Rashidi, D. Rashtchian, R. Lotfi, and A. Amrollahi, “Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids,” Thermochimica Acta, vol. 549, pp. 87–94, 2012, doi: 10.1016/j.tca.2012.09.006.
W. Li, C. Zou, and X. Li, “Thermo-physical properties of waste cooking oil-based nanofluids,” Applied Thermal Engineering, vol. 112, pp. 784–792, 2017, doi: 10.1016/j.applthermaleng.2016.10.136.
R. A. Raju, A. Andhare, and N. K. Sahu, “Performance of multi-walled carbon nanotube-based nanofluid in turning operation,” Materials and Manufacturing Processes, vol. 6914, no. March, pp. 1–7, 2017, doi: 10.1080/10426914.2017.1279291.
B. Zareh-Desari and B. Davoodi, “Assessing the lubrication performance of vegetable oil-based nano-lubricants for environmentally conscious metal forming processes,” Journal of Cleaner Production, vol. 135, pp. 1198–1209, 2016, doi: 10.1016/j.jclepro.2016.07.040.
Y. Ueki, T. Aoki, K. Ueda, and M. Shibahara, “Thermophysical properties of carbon-based material nanofluid,” International Journal of Heat and Mass Transfer, vol. 113, pp. 1130–1134, 2017, doi: 10.1016/j.ijheatmasstransfer.2017.06.008.
R. M. Mostafizur, A. R. Abdul Aziz, R. Saidur, and M. H. U. Bhuiyan, “Investigation on stability and viscosity of SiO2-CH3OH (methanol) nanofluids,” International Communications in Heat and Mass Transfer, vol. 72, pp. 16–22, 2016, doi: 10.1016/j.icheatmasstransfer.2016.01.001.
S. Yang et al., “Preparation and characterization of non-solvent halloysite nanotubes nanofluids,” Applied Clay Science, vol. 126, pp. 215–222, 2016, doi: 10.1016/j.clay.2016.03.018.
F. Yu et al., “Dispersion stability of thermal nanofluids,” Progress in Natural Science: Materials International, vol. 27, no. 5. pp. 531–542, 2017, doi: 10.1016/j.pnsc.2017.08.010.
H. Wang, W. Yang, L. Cheng, C. Guan, and H. Yan, “Chinese ink: High performance nanofluids for solar energy,” Solar Energy Materials and Solar Cells, vol. 176. pp. 374–380, 2018, doi: 10.1016/j.solmat.2017.10.023.
N. A. Che Sidik, M. Mahmud Jamil, W. M. A. Aziz Japar, and I. Muhammad Adamu, “A review on preparation methods, stability and applications of hybrid nanofluids,” Renewable and Sustainable Energy Reviews, vol. 80. pp. 1112–1122, 2017, doi: 10.1016/j.rser.2017.05.221.
H. Xie, L. Chen, and Q. Wu, “Measurements of the viscosity of suspensions (nanofluids) containing nanosized Al2O3 particles,” in High Temperatures - High Pressures, 2008, vol. 37, no. 2, pp. 127–135.
R. Kamatchi, S. Venkatachalapathy, and B. Abhinaya Srinivas, “Synthesis, stability, transport properties, and surface wettability of reduced graphene oxide/water nanofluids,” International Journal of Thermal Sciences, vol. 97, pp. 17–25, 2015, doi: 10.1016/j.ijthermalsci.2015.06.011.
H. Xie, H. Lee, W. Youn, and M. Choi, “Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities,” Journal of Applied Physics, vol. 94, no. 8, pp. 4967–4971, 2003, doi: 10.1063/1.1613374.
C. Qi, J. Hu, M. Liu, L. Guo, and Z. Rao, “Experimental study on thermo-hydraulic performances of CPU cooled by nanofluids,” Energy Conversion and Management, vol. 153, pp. 557–565, 2017, doi: 10.1016/j.enconman.2017.10.041.
S. Aberoumand and A. Jafarimoghaddam, “Tungsten (III) oxide (WO3) - Silver/transformer oil hybrid nanofluid: Preparation, stability, thermal conductivity and dielectric strength,” Alexandria Engineering Journal. 2016, doi: 10.1016/j.aej.2016.11.003.
M. Mehrali, S. Tahan Latibari, M. Mehrali, T. M. I. Mahlia, E. Sadeghinezhad, and H. S. C. Metselaar, “Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage,” Applied Energy, vol. 135, pp. 339–349, 2014, doi: 10.1016/j.apenergy.2014.08.100.
E. Sadeghinezhad et al., “An experimental and numerical investigation of heat transfer enhancement for graphene nanoplatelets nanofluids in turbulent flow conditions,” International Journal of Heat and Mass Transfer, vol. 81, pp. 41–51, 2015, doi: 10.1016/j.ijheatmasstransfer.2014.10.006.
J. Liu, C. Xu, L. L. Chen, X. Fang, and Z. Zhang, “Preparation and photo-thermal conversion performance of modified graphene/ionic liquid nanofluids with excellent dispersion stability,” Solar Energy Materials and Solar Cells, vol. 170, pp. 219–232, 2017, doi: 10.1016/j.solmat.2017.05.062.
M. Amrita, S. A. Shariq, M. Manoj, and C. Gopal, “Experimental investigation on application of emulsifier oil based nano cutting fluids in metal cutting process,” in Procedia Engineering, 2014, vol. 97, pp. 115–124, doi: 10.1016/j.proeng.2014.12.231.
S. H. Seyedmahmoudi, S. L. Harper, M. C. Weismiller, and K. R. Haapala, “Evaluating the use of zinc oxide and titanium dioxide nanoparticles in a metalworking fluid from a toxicological perspective,” Journal of Nanoparticle Research, vol. 17, no. 2, pp. 1–12, 2015, doi: 10.1007/s11051-015-2915-7.
A. Kumar, S. Ghosh, and S. Aravindan, “Grinding performance improvement of silicon nitride ceramics by utilizing nanofluids,” Ceramics International, vol. 43, no. 16, pp. 13411–13421, 2017, doi: 10.1016/j.ceramint.2017.07.044.
D. Madhesh, R. Parameshwaran, and S. Kalaiselvam, “Experimental investigation on convective heat transfer and rheological characteristics of Cu-TiO2 hybrid nanofluids,” Experimental Thermal and Fluid Science, vol. 52, pp. 104–115, 2014, doi: 10.1016/j.expthermflusci.2013.08.026.
K. S. Suganthi and K. S. Rajan, “Temperature induced changes in ZnO-water nanofluid: Zeta potential, size distribution and viscosity profiles,” International Journal of Heat and Mass Transfer, vol. 55, no. 25–26, pp. 7969–7980, 2012, doi: 10.1016/j.ijheatmasstransfer.2012.08.032.
M. Hemmat Esfe, S. Saedodin, W. M. Yan, M. Afrand, and N. Sina, “Erratum to: Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles (Journal of Thermal Analysis and Calorimetry, (2016), DOI:10.1007/s10973-015-5104-0c),” Journal of Thermal Analysis and Calorimetry, vol. 125, no. 1. p. 565, 2016, doi: 10.1007/s10973-016-5423-9.
D. Toghraie, V. A. Chaharsoghi, and M. Afrand, “Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid: Effects of temperature and nanoparticles concentration,” Journal of Thermal Analysis and Calorimetry, vol. 125, no. 1, pp. 527–535, 2016, doi: 10.1007/s10973-016-5436-4.
M. Afrand, K. Nazari Najafabadi, and M. Akbari, “Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines,” Applied Thermal Engineering, vol. 102, pp. 45–54, 2016, doi: 10.1016/j.applthermaleng.2016.04.002.
S. Sarbolookzadeh Harandi, A. Karimipour, M. Afrand, M. Akbari, and A. D’Orazio, “An experimental study on thermal conductivity of F-MWCNTs-Fe3O4/EG hybrid nanofluid: Effects of temperature and concentration,” International Communications in Heat and Mass Transfer, vol. 76, pp. 171–177, 2016, doi: 10.1016/j.icheatmasstransfer.2016.05.029.
S. K. Lim, W. H. Azmi, and A. R. Yusoff, “Investigation of thermal conductivity and viscosity of Al2O3/water–ethylene glycol mixture nanocoolant for cooling channel of hot-press forming die application,” International Communications in Heat and Mass Transfer, vol. 78, no. November, pp. 182–189, 2016, doi: 10.1016/j.icheatmasstransfer.2016.09.018.
V. Vasu and G. Pradeep Kumar Reddy, “Effect of minimum quantity lubrication with Al sub2/sub O sub3/sub nanoparticles on surface roughness, tool wear and temperature dissipation in machining Inconel 600 alloy,” Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, vol. 225, no. 1, pp. 3–16, 2011, doi: 10.1177/1740349911427520.
M. F. Nabil, W. H. Azmi, K. Abdul Hamid, R. Mamat, and F. Y. Hagos, “An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: Ethylene glycol mixture,” International Communications in Heat and Mass Transfer, vol. 86, pp. 181–189, 2017, doi: 10.1016/j.icheatmasstransfer.2017.05.024.
M. Karami, M. A. Akhavan Bahabadi, S. Delfani, and A. Ghozatloo, “A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector,” Solar Energy Materials and Solar Cells, vol. 121, pp. 114–118, 2014, doi: 10.1016/j.solmat.2013.11.004.
Z. Hajjar, A. morad Rashidi, and A. Ghozatloo, “Enhanced thermal conductivities of graphene oxide nanofluids,” International Communications in Heat and Mass Transfer, vol. 57, pp. 128–131, 2014, doi: 10.1016/j.icheatmasstransfer.2014.07.018.
L. Chen, C. Xu, J. Liu, X. Fang, and Z. Zhang, “Optical absorption property and photo-thermal conversion performance of graphene oxide/water nanofluids with excellent dispersion stability,” Solar Energy, vol. 148, pp. 17–24, 2017, doi: 10.1016/j.solener.2017.03.073.
K. H. Park, M. A. Suhaimi, G. D. Yang, D. Y. Lee, S. W. Lee, and P. Kwon, “Milling of titanium alloy with cryogenic cooling and minimum quantity lubrication (MQL),” International Journal of Precision Engineering and Manufacturing, vol. 18, no. 1, pp. 5–14, 2017, doi: 10.1007/s12541-017-0001-z.
C. Wang, X. Zhang, and M. Su, “Synthesis and thermal stability of Field’s alloy nanoparticles and nanofluid,” Materials Letters, vol. 205, pp. 6–9, 2017, doi: 10.1016/j.matlet.2017.06.051.
M. S. Najiha and M. M. Rahman, “Experimental investigation of flank wear in end milling of aluminum alloy with water-based TiO2 nanofluid lubricant in minimum quantity lubrication technique,” International Journal of Advanced Manufacturing Technology, vol. 86, no. 9–12, pp. 2527–2537, 2016, doi: 10.1007/s00170-015-8256-y.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.