Creep test rig for cantilever beam: Fundamentals, prospects and present views

Authors

  • M. R. M. Asyraf Department of Aerospace Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Phone: +60397694396; Fax: +60397697125
  • Mohamad Ridzwan Ishak Department of Aerospace Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Phone: +60397694396; Fax: +60397697125
  • S. M. Sapuan Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • N. Yidris Department of Aerospace Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Phone: +60397694396; Fax: +60397697125
  • R. M. Shahroze Department of Aerospace Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Phone: +60397694396; Fax: +60397697125
  • A. N. Johari Department of Aerospace Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Phone: +60397694396; Fax: +60397697125
  • M. Rafidah Department of Civil Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • R. A. Ilyas Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.15282/jmes.14.2.2020.26.0538

Keywords:

Creep, structural joining mechanisms, material characterization, anisotropic material, cantilever beam, long term durability, test rig

Abstract

Cross arms in transmission tower are made up of Chengal wood, which degrade and collapse after a long period of service. This is due to creep deformation, and the rate of degradation is expedited due to exposure to extreme tropical climate. Hence, it is crucial to comprehend the early creep stage, which leads to structural failure. Apart from that, there are several research and industrial application gaps of these cross arms. For instance, creep life analysis of actual cross arms is still unexplored. In this study, the state-of-the-art is related to creep experiments and creep test rig designs, espacially on the creep test of a cantilever beam setup. The experimental methodologies implemented two vital approaches, conventional and accelerated techniques. The specific creep experiments on cantilever beam structure are emphasized and suggested in the manuscript as the building blocks for future design of cantilever creep test rig. This helps to guide future development design of cantilever beam creep test rig by fulfilling the specific criteria related to creep fundamentals, numerical modelling analysis, test operation for data evaluation, and development process. At the end, the challenges and improvements on the criteria existing design of test rigs are elaborated.

References

M. S. A. Bakar, D. Mohamad, Z. A. M. Ishak, Z. M. Yusof, and N. Salwi, “Durability control of moisture degradation in GFRP cross arm transmission line towers,” AIP Conf. Proc., vol. 020027, no. November, 2018

M. R. M. Asyraf, M. R. Ishak, S. M. Sapuan, and N. Yidris, “Conceptual design of multi-operation outdoor flexural creep test rig using hybrid concurrent engineering approach,” J. Mater. Res. Technol., vol. 9, no. 2, pp. 2357–2368, Mar. 2020, doi: 10.1016/j.jmrt.2019.12.067

I. M. Rawi and M. Z. A. Ab Kadir, “Investigation on the 132kV overhead lines lightning-related flashovers in Malaysia,” in International Symposium on Lightning Protection, XIII SIPDA, 2015, pp. 239–243, doi: 10.1109/SIPDA.2015.7339293

A. C. Liew, “Assessment of the lightning performance of quadruplecircuit transmission lines with steel and wooden crossarms,” Electr. power Syst. Res., vol. 27, no. 2, pp. 91–97, 1993

C. N. A. Jaafar, M. A. M. Rizal, and I. Zainol, “Effect of kenaf alkalization treatment on morphological and mechanical properties of epoxy / silica / kenaf composite,” Int. J. Eng. Technol., vol. 7, pp. 258–263, 2018, doi: 10.14419/ijet.v7i4.35.22743

C. N. A. Jaafar, I. Zainol, and M. A. M. Rizal, “Preparation and characterisation of epoxy / silica / kenaf composite using hand lay-up method,” in 27th Scientific Conference of the Microscopy Society Malaysia (27th SCMSM 2018), 2018, pp. 2–6

R. M. Shahroze, M. Chandrasekar, K. Senthilkumar, et al., “A review on the various fibre treatment techniques used for the fibre surface modification of the sugar palm fibres,” in Seminar Enau Kebangsaan, 2019, no. 1, pp. 48–52

I. M. Rawi, M. S. A. Rahman, M. Z. A. Ab Kadir, and M. Izadi, “Wood and fiberglass crossarm performance against lightning strikes on transmission towers,” in International Conference on Power Systems Transient (IPST), 2017, pp. 1–6

A. Syamsir, Z. A. M. Ishak, Z. M. Yusof, N. Salwi, and A. Nadhirah, “Durability control of UV radiation in glass fiber reinforced polymer (GFRP) - A review,” AIP Conf. Proc., vol. 2031, no. November, 2018, doi: 10.1063/1.5066989

Z. Itam, Z. A. M. Ishak, Z. M. Yusof, N. Salwi, and M. Zainoodin, “Effect on the temperature behavior of glass fiber reinforced polymer (GFRP) in various application - A review,” AIP Conf. Proc., vol. 2031, no. November, pp. 1–5, 2018, doi: 10.1063/1.5066982

Q. Ahsan, T. S. S. Carron, and Z. Mustafa, “On the use of nano fibrillated kenaf cellulose fiber as reinforcement in polylactic acid biocomposites,” J. Mech. Eng. Sci., vol. 13, no. 2, pp. 4970–4988, 2019, doi: 10.15282/jmes.13.2.2019.15.0412

R. A. Ilyas, S. M. Sapuan, A. Atiqah, et al., “Sugar palm ( Arenga pinnata [ Wurmb .] Merr ) starch films containing sugar palm nanofibrillated cellulose as reinforcement : Water barrier properties,” Polym. Compos., no. July, pp. 1–9, 2019, doi: 10.1002/pc.25379

M. R. M. Asyraf, M. R. Ishak, S. M. Sapuan, and N. Yidris, “Conceptual design of creep testing rig for full-scale cross arm using TRIZ-Morphological chart-analytic network process technique,” J. Mater. Res. Technol., vol. 8, no. 6, pp. 5647–5658, Oct. 2019, doi: 10.1016/j.jmrt.2019.09.033

A. M. N. Maisara, R. A. Ilyas, S. M. Sapuan, et al., “Effect of fibre length and sea water treatment on mechanical properties of sugar palm fibre reinforced unsaturated polyester composites,” Int. J. Recent Technol. Eng., vol. 8, no. 2S4, pp. 510–514, 2019, doi: 10.35940/ijrte.b1100.0782s419

A. Atiqah, M. Jawaid, S. M. Sapuan, et al., “Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites,” J. Mater. Res. Technol., no. July, Jul. 2019, doi: 10.1016/j.jmrt.2019.06.032

R. A. Ilyas and S. M. Sapuan, “The preparation methods and processing of natural fibre bio-polymer composites,” Curr. Org. Synth., vol. 16, no. 8, pp. 1068–1070, Jan. 2020, doi: 10.2174/157017941608200120105616

R. A. Ilyas, S. M. Sapuan, and M. R. Ishak, “Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata),” Carbohydr. Polym., vol. 181, pp. 1038–1051, Feb. 2018, doi: 10.1016/j.carbpol.2017.11.045

R. A. Ilyas, S. M. Sapuan, M. R. Ishak, and E. S. Zainudin, “Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites,” Carbohydr. Polym., vol. 202, pp. 186–202, Dec. 2018, doi: 10.1016/j.carbpol.2018.09.002

R. A. Ilyas, S. M. Sapuan, R. Ibrahim, et al., “Thermal, biodegradability and water barrier properties of bio-nanocomposites based on plasticised sugar palm starch and nanofibrillated celluloses from sugar palm fibres,” J. Biobased Mater. Bioenergy, vol. 14, pp. 1–13, 2020, doi: 10.1166/jbmb.2020.1951

R. A. Ilyas, S. M. Sapuan, R. Ibrahim, et al., “Production, processes and modification of nanocrystalline cellulose from agro-waste: A review,” in Nanocrystalline Materials, IntechOpen, 2019, pp. 3–32, doi: 10.5772/intechopen.87001

M. S. N. Atikah, R. A. Ilyas, S. M. Sapuan, et al., “Degradation and physical properties of sugar palm starch / sugar palm nanofibrillated cellulose bionanocomposite,” Polimery, vol. 64, no. 10, pp. 27–36, 2019, doi: 10.14314/polimery.2019.10.5

R. A. Ilyas, S. M. Sapuan, R. Ibrahim, et al., “Effect of sugar palm nanofibrillated cellulose concentrations on morphological, mechanical and physical properties of biodegradable films based on agro-waste sugar palm (Arenga pinnata (Wurmb.) Merr) starch,” J. Mater. Res. Technol., vol. 8, no. 5, pp. 4819–4830, Sep. 2019, doi: 10.1016/j.jmrt.2019.08.028

N. M. Nurazzi, A. Khalina, S. M. Sapuan, and R. A. Ilyas, “Mechanical properties of sugar palm yarn / woven glass fiber reinforced unsaturated polyester composites : effect of fiber loadings and alkaline treatment,” Polimery, vol. 64, no. 10, pp. 12–22, 2019, doi: 10.14314/polimery.2019.10.3

S. M. Sapuan, “Development of Sugar Palm–Based Products: A Community Project,” in Sugar Palm Biofibers, Biopolymers, and Biocomposites, 1st ed., Boca Raton, FL : CRC Press, 2018, pp. 245–266, doi: 10.1201/9780429443923-12

H. Abral, J. Ariksa, M. Mahardika, et al., “Transparent and antimicrobial cellulose film from ginger nanofiber,” Food Hydrocoll., vol. 98, p. 105266, Jan. 2020, doi: 10.1016/j.foodhyd.2019.105266

A. M. N. Azammi, R. A. Ilyas, S. M. Sapuan, et al., “Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface,” in Interfaces in Particle and Fibre Reinforced Composites, 1st ed., no. November, London: Elsevier, 2020, pp. 29–93, doi: 10.1016/B978-0-08-102665-6.00003-0

H. A. Aisyah, M. T. Paridah, S. M. Sapuan, et al., “Thermal properties of woven kenaf/carbon fibre-reinforced epoxy hybrid composite panels,” Int. J. Polym. Sci., vol. 2019, no. December, pp. 1–8, Dec. 2019, doi: 10.1155/2019/5258621

M. D. Hazrol, S. M. Sapuan, R. A. Ilyas, M. L. Othman, and S. F. K. Sherwani, “Electrical properties of sugar palm nanocrystalline cellulose, reinforced sugar palm starch nanocomposites,” Polimery, vol. 55, no. 5, pp. 33–40, 2020, doi: 10.14314/polimery.2020.5.5

A. N. Johari, M. R. Ishak, Z. Leman, et al., “Fabrication and cut-in speed enhancement of savonius vertical axis wind turbine (SVAWT) with hinged blade using fiberglass composites,” in Seminar Enau Kebangsaan, 2019, no. 1997, pp. 978–983

S. Ashwindran, A. A. Azizuddin, and A. N. Oumer, “Computational fluid dynamic (CFD) of vertical-axis wind turbine: Mesh and time-step sensitivity study,” J. Mech. Eng. Sci., vol. 13, no. 3, pp. 5604–5624, 2019, doi: 10.15282/jmes.13.3.2019.24.0450

N. Mazani, S. M. Sapuan, M. L. Sanyang, A. Atiqah, and R. A. Ilyas, “Design and fabrication of a shoe shelf from kenaf fiber reinforced unsaturated polyester composites,” in Lignocellulose for Future Bioeconomy, no. 2000, Elsevier Inc., 2019, pp. 315–332, doi: 10.1016/b978-0-12-816354-2.00017-7

Z. Shanti Kiran, V. Suresh Babu, and K. V. L. Soma Sekhar, “Study of the microhardness and erosive wear behavior of organo-modified nanoclay filled glass-epoxy composites and optimization,” J. Mech. Eng. Sci., vol. 13, no. 2, pp. 4794–4815, 2019, doi: 10.15282/jmes.13.2.2019.03.0400

M. N. Norizan, K. Abdan, R. A. Ilyas, and S. P. Biofibers, “Effect of fiber orientation and fiber loading on the mechanical and thermal properties of sugar palm yarn fiber reinforced unsaturated polyester resin composites,” Polimery, vol. 65, no. 2, pp. 34–43, 2020, doi: 10.14314/polimery.2020.2.5

N. M. Nurazzi, A. Khalina, S. M. Sapuan, et al., “Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid composites,” J. Mater. Res. Technol., vol. 9, no. 2, pp. 1606–1618, Mar. 2020, doi: 10.1016/j.jmrt.2019.11.086

D. Mohamad, A. Syamsir, S. Beddu, et al., “Numerical study of composite fiberglass cross arms under statics loading and improvement with sleeve installation,” IOP Conf. Ser. Mater. Sci. Eng., vol. 530, p. 012027, 2019, doi: 10.1088/1757-899X/530/1/012027

D. Mohamad, A. Syamsir, S. N. Sa’don, et al., “Stacking sequence effects on performance of composite laminate structure subjected to multi-axial quasi-static loading stacking sequence,” IOP Conf. Ser. Mater. Sci. Eng., vol. 530, pp. 1–6, 2019, doi: 10.1088/1757-899X/530/1/012030

D. Mohamad, A. Syamsir, Z. Itam, et al., “Numerical simulation on the statics deformation study of composite cross arms of different materials and configurations,” IOP Conf. Ser. Mater. Sci. Eng., vol. 530, no. 1, 2019, doi: 10.1088/1757-899X/530/1/012028

W. Ashraf, M. R. Ishak, M. Y. M. Zuhri, et al., “Investigation of different facesheet materials on compression properties of honeycomb sandwich composite,” in Seminar Enau Kebangsaan, 2019, pp. 129–132

M. F. Younes and M. A. Abdel Rahman, “Tensile relaxation behaviour for multi layes fiberglass fabric/epoxy composite,” Eur. J. Mater. Sci., vol. 3, no. 1, pp. 1–13, 2016

A. Anand, P. Banerjee, R. K. Prusty, and B. Chandra Ray, “Lifetime prediction of nano-silica based glass fibre/epoxy composite by time temperature superposition principle,” IOP Conf. Ser. Mater. Sci. Eng., vol. 338, no. 1, 2018, doi: 10.1088/1757-899X/338/1/012020

A. Nadhirah, D. Mohamad, M. Zainoodin, et al., “Properties of fiberglass crossarm in transmission tower - A review,” Prop. fiberglass crossarm Transm. tower - a Rev., vol. 12, no. 24, pp. 15228–15233, 2017

M. R. M. Asyraf, M. R. Ishak, S. M. Sapuan, et al., “Creep test rig for full-scale composite crossarm: simulation modelling and analysis,” in Seminar Enau Kebangsaan, 2019, pp. 34–38

H. Kumawat, “Use of graphene-based composite pipe materials for transportation of oil and gas,” ASME 2015 India Int. Oil Gas Pipeline Conf. IOGPC 2015, 2015, doi: 10.1115/IOGPC2015-7952

M. R. M. Asyraf, M. R. Ishak, M. R. Razman, and M. Chandrasekar, “Fundamentals of creep, testing methods and development of test rig for the full-scale crossarm: a review,” J. Teknol., vol. 81, no. 4, pp. 155–164, Jun. 2019, doi: 10.11113/jt.v81.13402

N. Sun and C. E. Frazier, “Time/temperature equivalence in the dry wood creep response,” Holzforschung, vol. 61, no. 6, pp. 702–706, 2007, doi: 10.1515/HF.2007.114

Y. Taniguchi, K. Ando, and H. Yamamoto, “Determination of three-dimensional viscoelastic compliance in wood by tensile creep test,” J. Wood Sci., vol. 56, no. 1, pp. 82–84, 2010, doi: 10.1007/s10086-009-1069-6

M. Tajvidi, R. H. Falk, and J. C. Hermanson, “Time-temperature superposition principle applied to a kenaf-fiber/high- density polyethylene composite,” J. Appl. Polym. Sci., vol. 97, no. 5, pp. 1995–2004, 2005, doi: 10.1002/app.21648

B. Ponsot, D. Valentin, and A. R. Bunsell, “The effects of time, temperature and stress on the long-term behaviour of CFRP,” Compos. Sci. Technol., vol. 35, no. 1, pp. 75–94, 1989, doi: 10.1016/0266-3538(89)90071-7

Z. Zhang, J. L. Yang, and K. Friedrich, “Creep resistant polymeric nanocomposites,” Polymer, vol. 45, no. 10, pp. 3481–3485, May 2004, doi: 10.1016/j.polymer.2004.03.004

D. Basaid, C. Aribi, J. Kari, A. Benmounah, and B. Safi, “A comparative study of the creep behavior of laminated composites: Effect of type of fiber and matrix,” Sci. Res. Essays, vol. 12, no. 6, pp. 59–68, 2017, doi: 10.5897/sre2017.6492

H. Fu, M. Dun, H. Wang, et al., “Creep response of wood flour-high-density polyethylene/laminated veneer lumber coextruded composites,” Constr. Build. Mater., vol. 237, p. 117499, 2020, doi: 10.1016/j.conbuildmat.2019.117499

H. Chandekar and V. Chaudhari, “Flexural creep behaviour of jute polypropylene composites,” IOP Conf. Ser. Mater. Sci. Eng., vol. 149, no. 1, pp. 1–7, 2016, doi: 10.1088/1757-899X/149/1/012107

V. S. Chevali, D. R. Dean, and G. M. Janowski, “Flexural creep behavior of discontinuous thermoplastic composites: Non-linear viscoelastic modeling and time-temperature-stress superposition,” Compos. Part A Appl. Sci. Manuf., vol. 40, no. 6–7, pp. 870–877, 2009, doi: 10.1016/j.compositesa.2009.04.012

S. Kumar Ghosh, R. K. Prusty, D. K. Rathore, and B. C. Ray, “Creep behaviour of graphite oxide nanoplates embedded glass fiber/epoxy composites: Emphasizing the role of temperature and stress,” Compos. Part A Appl. Sci. Manuf., vol. 102, pp. 166–177, 2017, doi: 10.1016/j.compositesa.2017.08.001

N. Buratti and C. Mazzotti, “Creep testing methodologies and results interpretation,” in RILEM Bookseries, 2017, vol. 14, pp. 13–24, doi: 10.1007/978-94-024-1001-3_2

P. D. Nieuwoudt and W. P. Boshoff, The Time-Dependant Pull-Out Behaviour of Hooked Steel Fibres. 2016

D. Daviau-Desnoyers, J.-P. Charron, B. Massicotte, P. Rossi, and J.-L. Tailhan, “Creep behavior of a SFRC under service and ultimate bending loads,” in Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete, Springer, 2017, pp. 223–235

A. Hao, Y. Chen, and J. Y. Chen, “Creep and recovery behavior of kenaf/polypropylene nonwoven composites,” J. Appl. Polym. Sci., vol. 131, no. 17, pp. 8864–8874, 2014, doi: 10.1002/app.40726

M. Hadid, B. Guerira, M. Bahri, and K. Zouani, “The creep master curve construction for the polyamide 6 by the stepped isostress method,” Mater. Res. Innov., vol. 18, no. sup6, pp. S6-336-S6-339, 2014, doi: 10.1179/1432891714z.0000000001022

S. C. Yen and F. L. Williamson, “Accelerated characterization of creep response of an off-axis composite material,” Compos. Sci. Technol., vol. 38, no. 2, pp. 103–118, 1990, doi: 10.1016/0266-3538(90)90001-L

M. R. M. Asyraf, M. R. Ishak, S. M. Sapuan, and N. Yidris, “Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies,” J. Mater. Res. Technol., 2020, doi: 10.1016/j.jmrt.2020.01.013

W. N. Findley and F. A. Davis, Creep and relaxation of nonlinear viscoelastic materials. Courier Corporation, 2013

I. M. Ward and J. Sweeney, Mechanical properties of solid polymers. John Wiley & Sons, 2012

V. A. Alvarez, J. M. Kenny, and A. Vázquez, “Creep behavior of biocomposites based on sisal fiber reinforced cellulose derivatives/starch blends,” Polym. Compos., vol. 25, no. 3, pp. 280–288, 2004, doi: 10.1002/pc.20022

P. K. Chandra and P. J. do A. Sobral, “Calculation of viscoelastic properties of edible films: Application of three models,” Ciência e Tecnol. Aliment., vol. 20, no. 2, pp. 250–256, 2006, doi: 10.1590/s0101-20612000000200021

W. N. Findley, J. S. Lai, K. Onaran, and R. M. Christensen, “Creep and relaxation of nonlinear viscoelastic materials with an introduction to linear viscoelasticity,” J. Appl. Mech., vol. 44, no. 2, p. 364, 2010, doi: 10.1115/1.3424077

J. L. Yang, Z. Zhang, A. K. Schlarb, and K. Friedrich, “On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part II: Modeling and prediction of long-term performance,” Polymer (Guildf)., vol. 47, no. 19, pp. 6745–6758, 2006, doi: 10.1016/j.polymer.2006.07.060

Y. Jia, K. Peng, X. Gong, and Z. Zhang, “Creep and recovery of polypropylene/carbon nanotube composites,” Int. J. Plast., vol. 27, no. 8, pp. 1239–1251, 2011

A. Plaseied and A. Fatemi, “Tensile creep and deformation modeling of vinyl ester polymer and its nanocomposite,” J. Reinf. Plast. Compos., vol. 28, no. 14, pp. 1775–1788, 2009

D. Tscharnuter and A. Muliana, “Nonlinear response of viscoelastic polyoxymethylene (POM) at elevated temperatures,” Polymer (Guildf)., vol. 54, no. 3, pp. 1208–1217, 2013

M. I. M. Ahmad, J. L. Curiel Sosa, and J. A. Rongong, “Characterisation of creep behaviour using the power law model in copper alloy,” J. Mech. Eng. Sci., vol. 11, no. 1, pp. 2503–2510, 2017, doi: 10.15282/jmes.11.1.2017.9.0230

R. J. Hoyle, M. C. Griffith, and R. Y. Itani, “Primary creep in Douglas-fir beams of commercial size and quality,” Wood Fiber Sci., vol. 17, no. 3, pp. 300–314, 2007

Y. Du, N. Yan, and M. T. Kortschot, “An experimental study of creep behavior of lightweight natural fiber-reinforced polymer composite/honeycomb core sandwich panels,” Compos. Struct., vol. 106, pp. 160–166, 2013, doi: 10.1016/j.compstruct.2013.06.007

J. F. Hunt, H. Zhang, and Y. Huang, “Analysis of cantilever-beam bending stress relaxation properties of thin wood composites,” BioResources, vol. 10, no. 2, pp. 3131–3145, 2015, doi: 10.15376/biores.10.2.3131-3145

M. R. M. Asyraf, M. R. Ishak, S. M. Sapuan, et al., “Evaluation of design and simulation of creep test rig for full-scale cross arm structure,” Adv. Civ. Eng., 2020, doi: 10.1155/2019/6980918

H. W. Liu, Mechanics of Materials. Beijing: China Machine Press, 2004

M. Moutee, M. Fafard, Y. Fortin, and A. Laghdir, “Modeling the creep behavior of wood cantilever loaded at free end during drying,” Wood Fiber Sci., vol. 37, no. 3, pp. 521–534, 2005

G. Zhao, M. di Prisco, and L. Vandewalle, “Experimental investigation on uniaxial tensile creep behavior of cracked steel fiber reinforced concrete,” Mater. Struct. Constr., vol. 48, no. 10, pp. 3173–3185, 2015, doi: 10.1617/s11527-014-0389-1

S. Wong and R. Shanks, “Creep behaviour of biopolymers and modified flax fibre composites,” Compos. Interfaces, vol. 15, no. 2–3, pp. 131–145, 2008, doi: 10.1163/156855408783810894

A. A. A. Rashdi, S. M. Sapuan, M. M. H. M. Ahmad, and A. Khalina, “Water absorption and tensile properties of soil buried kenaf fibre reinforced unsaturated polyester composites (KFRUPC),” J. Food, Agric. Environ., vol. 7, no. 3–4, pp. 908–911, 2009

M. Muthuvel, G. Ranganath, K. Janarthanan, and K. Sarinivasan, “Characterization study of jute and glass fiber reinforced hybrid composite material,” Int. J. Eng. Res. Technol., vol. 2, no. 4, pp. 335–344, 2013, doi: 10.1177/2393957514555052

M. T. Mastura, S. M. Sapuan, M. R. Mansor, and A. A. Nuraini, “Conceptual design of a natural fibre-reinforced composite automotive anti-roll bar using a hybrid approach,” Int. J. Adv. Manuf. Technol., vol. 91, no. 5–8, pp. 2031–2048, Jul. 2017, doi: 10.1007/s00170-016-9882-8

N. M. Ishak, D. Sivakumar, and M. R. Mansor, “The application of TRIZ on natural fibre metal laminate to reduce the weight of the car front hood,” J. Brazilian Soc. Mech. Sci. Eng., vol. 40, no. 2, pp. 1–12, 2018, doi: 10.1007/s40430-018-1039-2

M. R. Mansor, S. M. Sapuan, and A. Hambali, “Conceptual design of kenaf polymer composites automotive spoiler using TRIZ and Morphology Chart methods,” vol. 761, pp. 63–67, 2015, doi: 10.4028/www.scientific.net/AMM.761.63

M. R. M. Asyraf, M. Rafidah, M. R. Ishak, et al., “Integration of TRIZ, Morphological Chart and ANP method for development of FRP composite portable fire extinguisher,” Polym. Compos., 2020, doi: 10.1002/pc.25587

F. Rubino, A. Nisticò, F. Tucci, and P. Carlone, “Marine Application of Fiber Reinforced Composites: A Review,” J. Mar. Sci. Eng., vol. 8, no. 1, p. 26, 2020, doi: 10.3390/jmse8010026

A. Iqbal, A. Saeed, and A. Ul-Hamid, “A review featuring the fundamentals and advancements of polymer/CNT nanocomposite application in aerospace industry,” Polym. Bull., 2020, doi: 10.1007/s00289-019-03096-0

D. W. Scott and A.-H. Zureick, “Compression creep of a pultruded E-glass/vinylester composite,” Compos. Sci. Technol., vol. 58, no. 8, pp. 1361–1369, Aug. 1998, doi: 10.1016/S0266-3538(98)00009-8

J. Wang, X. Wang, Q. He, Y. Zhang, and T. Zhan, “Time-temperature-stress equivalence in compressive creep response of Chinese fir at high-temperature range,” Constr. Build. Mater., vol. 235, p. 117809, 2020, doi: 10.1016/j.conbuildmat.2019.117809

J. Mills-Brown, K. Potter, S. Foster, and T. Batho, “The development of a high temperature tensile testing rig for composite laminates,” Compos. Part A Appl. Sci. Manuf., vol. 52, pp. 99–105, 2013, doi: 10.1016/j.compositesa.2013.04.009

S. Jorik, A. Lion, and M. Johlitz, “Design of the novel tensile creep experimental setup, characterisation and description of the long-term creep performance of polycarbonate,” Polym. Test., vol. 75, pp. 151–158, 2019, doi: 10.1016/j.polymertesting.2019.01.023

T. D’Antino and M. A. Pisani, “Long-term behavior of GFRP reinforcing bars,” Compos. Struct., vol. 227, 2019, doi: 10.1016/j.compstruct.2019.111283

S. Loni, I. Stefanou, and P. S. Valvo, “Experimental study on the creep behavior of GFRP pultruded beams,” in AIMETA 2013-XXI Congresso Nazionale dell Associazione Italiana di Meccanica Teorica e Applicata, 2013, pp. 1–10

EN ISO 14125-1998, “Fibre-reinforced plastic composites — Determination of flexural properties,” 1988

Downloads

Published

2020-06-23

How to Cite

[1]
M. R. M. Asyraf, “Creep test rig for cantilever beam: Fundamentals, prospects and present views”, J. Mech. Eng. Sci., vol. 14, no. 2, pp. 6869–6887, Jun. 2020.

Issue

Section

Article

Similar Articles

<< < 17 18 19 20 21 22 23 24 25 26 > >> 

You may also start an advanced similarity search for this article.