Numerical simulation and comparative analysis of pressure drop estimation in horizontal and vertical slurry pipeline

Authors

  • Om Parkash Verma Faculty of Mechanical Engineering, Amity University Haryana, Gurgaon, 122413, India. Phone: +91-98134-61935.
  • Arvind Kumar Faculty of Mechanical Engineering, J C Bose YMCA University, Faridabad, 121006, India.
  • Basant Singh Sikarwar Faculty of Mechanical Engineering, Amity University Uttar Pradesh, Noida, 201313, India.

DOI:

https://doi.org/10.15282/jmes.14.2.2020.06.0518

Keywords:

3D HSPL and VSPL, Eulerian two-phase model, slurry concentration, velocity distribution, pressure drop, 3D horizontal slurry pipeline, 3D vertical slurry pipeline

Abstract

Transportation of solids with water as a carrier in the form of slurry through long length pipelines is widely used by many industries and power plants. The transportation of slurry through vertical pipeline is a challenging task and require modification to overcome the pressure loss and power consumption requirements. In this perspective, numerical simulation of three-dimensional horizontal slurry pipeline (HSPL) and vertical slurry pipeline (VSPL) carrying glass beads solid particulates of spherical diameter 440 µm and density 2,470 kg/m3 is carried out. The 3D computational model for horizontal and vertical slurry pipeline is developed for a pipe of 0.0549 m diameter and analyzed in available commercial software ANSYS Fluent 16. The simulation is conducted by using Eulerian multiphase model with RNG k-ɛ turbulence closure at solid concentration range 10 – 20% (by volume) for mean flow velocities ranging from 1-4 ms-1. It is found that the pressure drop rises for both HSPL and VSPL with escalation in mean flow velocity and solid concentration. The predicted pressure drop in VSPL is found to follow the same pattern as with HSPL but higher in magnitude for all chosen velocity and solid concentration range. The obtained results of predicted pressure drop in HSPL are validated with the available experimental data in the literature. A parametric study is conducted with the aim of visualizing and understanding the slurry flow behavior in HSPL and VSPL. Finally, the results of solid concentration contour, velocity contour, solid concentration profiles, velocity profiles and pressure drop are predicted for both the slurry pipelines.

References

V. Matousek, “Pressure drops and flow patterns in sand-mixture pipes,” Exp. Therm. Fluid Sci., vol. 26, no. 6–7, pp. 693–702, 2002, doi: 10.1016/S0894-1777(02)00176-0.

M. Kraft, “Modelling of particulate processes,” KONA Powder Part. J., vol. 23, no. March, pp. 18–35, 2005, doi: 10.14356/kona.2005007.

D. R. Kaushal and Y. Tomita, “Experimental investigation for near-wall lift of coarser particles in slurry pipeline using γ-ray densitometer,” Powder Technol., vol. 172, no. 3, pp. 177–187, 2007, doi: 10.1016/j.powtec.2006.11.020.

U. Kumar, S. N. Singh, and V. Seshadri, “Experimental investigation on pressure drop characteristics of bi-modal slurry flow in a straight horizontal pipe,” International Journal of Scientific & Engineering Research, vol. 6, no. 11, pp. 153–158, 2015.

V. Matoušek, “Pipe-wall friction in vertical sand-slurry flows,” Part. Sci. Technol., vol. 27, no. 5, pp. 456–468, 2009, doi: 10.1080/02726350903133179.

C. X. Lin and M. A. Ebadian, “A numerical study of developing slurry flow in the entrance region of a horizontal pipe,” Comput. Fluids, vol. 37, no. 8, pp. 965–974, 2008, doi: 10.1016/j.compfluid.2007.10.008.

S. Chandel, V. Seshadri, and S. N. Singh, “Effect of additive on pressure drop and rheological characteristics of fly ash slurry at high concentration,” Part. Sci. Technol., vol. 27, no. 3, pp. 271–284, 2009, doi: 10.1080/02726350902922036.

S. Chandel, S. N. Singh, and V. Seshadri, “Iaast 1-9,” vol. 1, no. JUNE, pp. 1–9, 2010.

H. Naik, M. Mishra, and K. Rao, “Influence of Chemical Reagents on Rheological Properties of Fly Ash-Water Slurry at Varying Temperature Environment,” Coal Combust. Gasif. Prod., vol. 3, no. 1, pp. 83–93, 2011, doi: 10.4177/ccgp-d-11-00015.1.

P. K. Senapati, B. K. Mishra, and A. Parida, “Analysis of friction mechanism and homogeneity of suspended load for high concentration fly ash & bottom ash mixture slurry using rheological and pipeline experimental data,” Powder Technol., vol. 250, pp. 154–163, 2013, doi: 10.1016/j.powtec.2013.10.014.

Y. Y. Jiang and P. Zhang, “Numerical investigation of slush nitrogen flow in a horizontal pipe,” Chem. Eng. Sci., vol. 73, pp. 169–180, 2012, doi: 10.1016/j.ces.2012.01.027.

D. R. Kaushal, T. Thinglas, Y. Tomita, S. Kuchii, and H. Tsukamoto, “CFD modeling for pipeline flow of fine particles at high concentration,” Int. J. Multiph. Flow, vol. 43, pp. 85–100, 2012, doi: 10.1016/j.ijmultiphaseflow.2012.03.005.

D. R. Kaushal, A. Kumar, Y. Tomita, S. Kuchii, and H. Tsukamoto, “Flow of mono-dispersed particles through horizontal bend,” Int. J. Multiph. Flow, vol. 52, pp. 71–91, 2013, doi: 10.1016/j.ijmultiphaseflow.2012.12.009.

I. E.-S. and K. E.-N. Tamer Nabil, “Sand-water slurry flow modelling in a horizontal pipeline solid-liquid slurry flow CFD model eulerian model,” Int. Water Technol. J., vol. 4, no. March, pp. 1–17, 2014.

R. Silva, F. A. P. Garcia, P. M. G. M. Faia, and M. G. Rasteiro, “Settling suspensions flow modelling: A review,” KONA Powder Part. J., no. 32, pp. 41–56, 2015, doi: 10.14356/kona.2015009.

M. K. Gopaliya and D. R. Kaushal, “Analysis of effect of grain size on various parameters of slurry flow through pipeline using CFD,” Part. Sci. Technol., vol. 33, no. 4, pp. 369–384, 2015, doi: 10.1080/02726351.2014.971988.

G. K. Pani, P. Rath, R. Barik, and P. K. Senapati, “The effect of selective additives on the rheological behavior of power plant ash slurry,” Part. Sci. Technol., vol. 33, no. 4, pp. 418–422, 2015, doi: 10.1080/02726351.2014.990657.

K. M. Assefa and D. R. Kaushal, “Experimental study on the rheological behaviour of coal ash slurries,” J. Hydrol. Hydromechanics, vol. 63, no. 4, pp. 303–310, 2015, doi: 10.1515/johh-2015-0029.

M. Swamy, N. G. Díez, and A. Twerda, “Numerical modelling of the slurry flow in pipelines and prediction of flow regimes,” Comput. Methods Multiph. Flow VIII, vol. 1, pp. 311–322, 2015, doi: 10.2495/mpf150271.

D. Wu, B. Yang, and Y. Liu, “Pressure drop in loop pipe flow of fresh cemented coal gangue-fly ash slurry: Experiment and simulation,” Adv. Powder Technol., vol. 26, no. 3, pp. 920–927, 2015, doi: 10.1016/j.apt.2015.03.009.

G. V. Messa and S. Malavasi, “Improvements in the numerical prediction of fully-suspended slurry flow in horizontal pipes,” Powder Technol., vol. 270, no. Part A, pp. 358–367, 2015, doi: 10.1016/j.powtec.2014.10.027.

M. Kumar Gopaliya and D. R. Kaushal, “Modeling of sand-water slurry flow through horizontal pipe using CFD,” J. Hydrol. Hydromechanics, vol. 64, no. 3, pp. 261–272, 2016, doi: 10.1515/johh-2016-0027.

T. N. Ofei and A. Y. Ismail, “Eulerian-Eulerian Simulation of Particle-Liquid Slurry Flow in Horizontal Pipe,” J. Pet. Eng., vol. 2016, pp. 1–10, 2016, doi: 10.1155/2016/5743471.

W. Peng and X. Cao, “Numerical simulation of solid particle erosion in pipe bends for liquid-solid flow,” Powder Technol., vol. 294, pp. 266–279, 2016, doi: 10.1016/j.powtec.2016.02.030.

D. R. Kaushal, A. Kumar, Y. Tomita, S. Kuchii, and H. Tsukamoto, “Flow of Bi-modal slurry through horizontal bend,” KONA Powder Part. J., vol. 2017, no. 34, pp. 258–274, 2017, doi: 10.14356/kona.2017016.

K. M. Assefa and D. R. Kaushal, “A new model for the viscosity of highly concentrated multi-sized particulate Bingham slurries,” Part. Sci. Technol., vol. 35, no. 1, pp. 77–85, 2017, doi: 10.1080/02726351.2015.1131789.

A. K. Melorie and D. Raj Kaushal, “Experimental investigations of the effect of chemical additives on the rheological properties of highly concentrated iron ore slurries,” KONA Powder Part. J., vol. 2018, no. 35, pp. 186–199, 2018, doi: 10.14356/kona.2018001.

R. Naveh, N. M. Tripathi, and H. Kalman, “Experimental pressure drop analysis for horizontal dilute phase particle-fluid flows,” Powder Technol., vol. 321, pp. 355–368, 2017, doi: 10.1016/j.powtec.2017.08.029.

J. P. Singh, S. Kumar, and S. K. Mohapatra, “Modelling of two phase solid-liquid flow in horizontal pipe using computational fluid dynamics technique,” Int. J. Hydrogen Energy, vol. 42, no. 31, pp. 20133–20137, 2017, doi: 10.1016/j.ijhydene.2017.06.060.

R. A. Sultan, M. A. Rahman, S. Rushd, S. Zendehboudi, and V. C. Kelessidis, “Validation of CFD model of multiphase flow through pipeline and annular geometries,” Part. Sci. Technol., vol. 37, no. 6, pp. 685–697, 2019, doi: 10.1080/02726351.2018.1435594.

M. Tran, Z. Memon, A. Saieed, W. Pao, and F. Hashim, “Numerical simulation of two-phase separation in T-junction with experimental validation,” J. Mech. Eng. Sci., vol. 12, no. 4, pp. 4216–4230, 2018, doi: 10.15282/jmes.12.4.2018.17.0363.

O. Parkash, A. Kumar, and B. S. Sikarwar, "CFD modeling of commercial slurry flow through horizontal pipeline," In Advances in Interdisciplinary Engineering, Springer, Singapore, pp. 153-162, 2019.

S. U. Ahmed, R. Arora, and O. Parkash, “Flow characteristics of multiphase glass beads-water slurry through horizontal pipeline using computational fluid dynamics,” Int. J. Automot. Mech. Eng., vol. 16, no. 2, 2019, doi: 10.15282/ijame.16.2.2019.10.0497.

A. Bouaffane and K. Talbi, “Thermal study of fluid flow inside an annular pipe filled with porous media under local thermal non-equilibrium condition,” vol. 18, no. 1, pp. 59–66, 2011.

O. Parkash and R. Arora, “Flow characterization of multi-phase particulate slurry in thermal power plants using computational fluid dynamics,” J. Therm. Eng., vol. 6, no. 1, pp. 188–203, 2020, doi: 10.18186/THERMAL.672785.

S. Ahmed, R. Arora, and O. Parkash, “Prediction of flow parameters of glass beads-water slurry flow through horizontal pipeline using computational fluid dynamics,” Jordan J. Mech. Ind. Eng., vol. 12, no. 3, 2019.

S. Ahmed, R. Arora, and O. Parkash, "Numerical investigations on flow characteristics of sand-water slurry through horizontal pipeline using computational fluid dynamics," J. Therm. Eng., vol. 6, no. 2, pp. 128–139, 2020, doi: 10.18186/thermal.729205.

Downloads

Published

2020-06-16

How to Cite

[1]
O. P. Verma, A. Kumar, and B. S. Sikarwar, “Numerical simulation and comparative analysis of pressure drop estimation in horizontal and vertical slurry pipeline”, J. Mech. Eng. Sci., vol. 14, no. 2, pp. 6610–6624, Jun. 2020.

Issue

Section

Article

Similar Articles

<< < 23 24 25 26 27 28 29 30 31 32 > >> 

You may also start an advanced similarity search for this article.