Experimental and numerical FEM-based determinations of forming limit diagrams of St14 mild steel based on Marciniak-Kuczynski model

Authors

  • M. Mianroodi ICube laboratory, University of Strasbourg, CNRS, 4 Rue Boussingault, 67000 Strasbourg, France Phone: +33368852955
  • G. Altmeyer Laboratoire de Mécanique Gabriel Lamé, Université de Tours, Université d’Orléans, INSA Centre Val de Loire, Polytech Tours, 7 avenue Marcel Dassault BP40, 37004 Tours, France
  • S. Touchal ICube laboratory, University of Strasbourg, CNRS, 4 Rue Boussingault, 67000 Strasbourg, France Phone: +33368852955

DOI:

https://doi.org/10.15282/jmes.13.4.2019.08.0464

Keywords:

Forming Limit Diagram, Marciniak-Kuczynski, Formability, Finite element method, Biaxial tensile tests

Abstract

Forming Limit Diagrams (FLD) are used to design metal sheet processes and to choose appropriate material according to their formability. Development of simple and robust methods to determine the formability domain is then a major industrial issue. Marciniak-Kuczynski (M-K) plastic instability criterion is a classical and common approach used to predict numerical FLD. A convergence of the experimental conditions and theoretical M-K hypotheses is investigated. This analysis leads in the proposition of a simple experimental procedure based on classical instrumented biaxial testing machines to reproduce M-K in-plane loading conditions. Experimental results are compared with numerical simulations based on a finite element method implantation of M-K model. This versatile implementation allows the coupling of the plastic instability criterion in ABAQUS with a large range of material behaviors. Application of these experimental and numerical procedures on commercial St14 mild steel leads to the relative differences between lower experimental points and numerical forming limits predictions that do not exceed 4% and 10% in the case of uniaxial and equibiaxial tension for initial prescribed defect ratio of 0.99 and 0.95, and 22% in the case of plane tension. These procedures constitute ways easily implementable in the industry to obtain FLD at reduced costs that show good correlations between experimental results and numerical M-K predictions.

References

Gamsamer M. Strength and Ductility. Trans. ASM. 1946.

Keeler SP, Backofen WA. Plastic instability and fracture in sheets stretched over rigid punches. Trans. ASM. 1963; 56:25-48.

Keeler SP. Determination of forming limits in automotive stampings. Sheet Metal Industries. 1963; 42:683-91.

Goodwin GM. Application of strain analysis to sheet metal forming problems in the Press Shop. SAE Technical Paper: 60:767-774; 1968.

Altmeyer G, Abed-Meraim F, Balan T. Comparison of forming limit diagrams predicted with different localization criteria. Steel Research International. 2008; 79(1):24-31.

Abed-Meraim F, Balan T, Altmeyer G. Investigation and comparative analysis of plastic instability criteria: Application to forming limit diagrams. The International Journal of Advanced Manufacturing Technology. 2014; 71(5-8):1247-1262.

Marciniak Z, Kuczynski K. Limit strains in the process of stretch forming sheet metal. International Journal of Mechanical Sciences. 1967; 613-620.

Hutchinson JW, Neale KW, Needleman A. Sheet Necking-I. Validity of plane stress assumption of the long-wave length approximation. Mechanics of Sheet Metal Forming. 1978; 116-126.

Marciniak Z, Kuczynski K, Pokora T. Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension. International Journal of Mechanical Sciences. 1973;15:789-805.

Marciniak Z. Sheet Metal Forming Limits. In: Koistinen D.P., Wang NM, editors. Mechanics of Sheet Metal Forming. Springer, Boston, MA, 1978, 215-235.

Koistinen DP, Wang NM. Mechanics of sheet metal forming: material behavior and deformation analysis. Plenum Press New York, Springer US, 1978.

Banabic D. A review on recent developments of M-K model. Computer Methods in Materials Science. 2010; 10(4):225-237.

Banabic D. Sheet metal forming, Springer, 2010.

Nakazima K, Kikuma T, Hasuka K. Study on the formability of steel sheets. Yamata Technical Report: 264:8517-8530; 1968.

Marciniak Z, Duncan JL, Hu SJ. Mechanics of sheet metal forming. Butterworth Heinemann, Oxford, 2002.

Toroghinejad M, Dini G. Effect of Ti-micro alloy addition on the formability and mechanical properties of a low carbon (ST14) steel. International Journal of Iron & Steel Society of Iran. 2006; 3:1-6.

Lemaitre J, Chaboche JL. Mechanics of Solid Materials. Cambridge University Press, 1990.

Evangelista SH, Lirani J, A Al-Qureshi H. Implementing a modified Marciniak-Kuczynki model using the FEM for the simulation of sheet metal deep drawing. Journal of Materials Processing Technology. 2002; 130-131:135-144.

Robert Laminage SA Robert 2 St14 Pressing Steel DC04 DIN1.0338 technical datasheet. Retrieved from http://www.robertlaminage.ch ; 11 June 2018.

Altmeyer G. Modélisation théorique et numérique des critères d’instabilité plastique. Application à la prédiction des phénomènes de striction et de localisation lors d’opérations de mise en forme par emboutissage. Dissertation, Arts et Métiers ParisTech, 2011.

Ghosh AK. Strain localization in the diffuse neck in sheet metal. Metallurgical and Mater Transactions B. 1974; 5(7):1607-1616.

Altmeyer G, Abed-Meraim F, Balan T. Investigation of some localization criteria and their relevance to prediction of forming limit diagrams. Steel Research International. 2010; 81(9):1364-1367.

Butuc MC, da Rocha AB, Gracio JJ, Duarte JF. A more general model for forming limit diagrams prediction. Journal of Materials Processing Technology. 2002; 125-126:213-218.

Cao J, Yao H, Karafillis A. Prediction of localized thinning in sheet metal using a general anisotropic yield criterion. International Journal of Plasticity. 2000; 16:1105-1129.

Xu L, Chen L, De Cooman B, Steglich D, Barlat F. Hole expansion of advanced high strength steel sheet sample. International Journal of Material Forming. 2010; 3:247-250.

ASTM E2218-02 Standard Test Method for Determining Forming Limit Curves. ASTM International, West Conshohocken, PA; 2008.

International organization for standardization ISO 12004-2:2008 Metallic materials - Sheet and strip - Determination of forming-limit curves - Part 2: Determination of forming-limit curves in the laboratory; 2008.

Hotz W, Timm J. Experimental determination of forming limit curves (FLC). P. Hora (Ed.), Procedings of the 7th Numisheet Conference and Workshop, Interlaken, Switzerland, 271-278; 2008.

Banabic D, Lazarescu L, Paraianu L, Ciobanu I, Nicodim I, Comsa DS. Development of a new procedure for the expermimental determination of the forming limit Curves. CIRP Annals Manufacturing Technology. 2013; 255-258.

Chu X. Caractérisation expérimentale et prédiction de la formabilité d’un alliage d’aluminium en fonction de la température et de la vitesse de déformation. Dissertation, INSA de Rennes, 2013.

Song X, Leotoing L, Guines D, Ragneau E. Investigation of the forming limit strains at fracture of AA5086 sheets using an in-plane biaxial tensile test. Engineering Fracture Mechanics. 2016; 163:130-140.

Song X, Leotoing L, Guines D, Ragneau E. Characterization of forming limits at fracture with an optimized cruciform specimen:Application to DP600 steel sheets. International Journal of Mechanical Sciences. 2017; 126:35-43.

Zwick Roell technical datasheet. Retrieved from https://www.zwickroell.com.

Alejandro D, Escarpita A, Cardenas D, Elizalde H, Ramirez R, Probst O. Biaxial Tensile Strength Characterization of Textile Composite Materials. INTECH, 2012; 83-106.

Tasan CC, Hoefnagels JPM, Dekkers ECA, Geers MGD. Multi-axial deformation setup for microscopic testing of sheet metal to fracture. Experimental Mechanics. 2012; 52: 669-678.

Vempati SR, Brahama Raju K, Venkata Subbaiah K. Simulation of Ti-6Al-4V cruciform welded joints subjected to fatigue load using XFEM. Journal of Mechanical Engineering and Sciences. 2019; 13: 5371-5389.

Haris A, Tay TE, Tan VBC. Experimental analysis of composite bolted joints using digital image correlation. Journal of Mechanical Engineering and Sciences. 2017; 11: 2443-2455.

Samantaray BB, Mohanta CK. Analysis of industrial flame characteristics and constancy study using image processing technique. Journal of Mechanical Engineering and Sciences. 2015; 9: 1604-1613.

Brunet M, Mguil-Touchal S, Morestin F. Numerical and experimental analysis of necking in 3d sheet forming processes using damage variable. International Applied Mechanics. 1997; 45:205-214.

Wang K, Carsley JE, He B, Li J, Zhang L. Measuring limit strains with digital image correlation analysis. Journal of Materials Processing Technology. 2014; 5:1120-1130.

Martinez-Donaire AJ, Garcia-Lomas FJ, Vallellano C. New approaches to detect the onset of localised necking in sheets under through-thickness strain gradients. Materials & Design. 2014; 57:135-145.

Centeno G, Martinez-Donaire AJ, Morales-Palma D, Vallellano C, Silva MB, Martins PAF. Novel experimental techniques for the determination of the forming limits at necking and fracture, Materials forming and machining. Ed. Davim JP., Woodhead publishing in mechanical engineering, 2015.

Downloads

Published

2019-12-30

How to Cite

[1]
M. Mianroodi, G. Altmeyer, and S. Touchal, “Experimental and numerical FEM-based determinations of forming limit diagrams of St14 mild steel based on Marciniak-Kuczynski model”, J. Mech. Eng. Sci., vol. 13, no. 4, pp. 5818–5831, Dec. 2019.