Numerical simulation of peel test for ductile thin film along ceramic substrate: Elasto-plastic analysis
DOI:
https://doi.org/10.15282/jmes.15.1.2021.12.0612Keywords:
Finite element method, Films, Substrate, J-integral, Plastic zoneAbstract
Due to extensive applications of the thin film/substrate systems in engineering, the research on strength, ductility and reliability of these systems have attracted great deal of interest in recent years. The peel angle of debonded film on the ceramic substrate has a very important effect in the mechanical resistance of film/substrate bi-material. Among critical debonding parameters, peeling angle and thermal residual stresses can be a potential risk of brutal propagation causing the film/substrate composite failure under tensile loading. This study is carried out to analyze the peeling angle and residual thermal stresses effects with crack growth in the specimen. A two dimensional elastic-plastic finite element model is used to compute the J-integral and estimate the plastic zone size at the interfacial crack tip of film/substrate composite. Results show that the peeling phenomena is a fracture mixed mode where the dominance of either mode I or mode II is influenced by the peeling angle while delamination of thin film is greatly dependent on thermal residual stresses.
References
T. Pardoen, T. Ferracin, C. M. Landis, F. Delannay, “Constraint effects in adhesive joint fracture,” J. Mech. Phys. Solids, vol. 53, no. 9, pp. 1951–1983, 2005, doi: 10.1016/j.jmps.2005.04.009.
B. Cotterell, K. Hbaieb, J. G. Williams, H. Hadavinia, V. Tropsa, “The root rotation in double cantilever beam and peel tests,” Mech. Mater., vol. 38, no. 7, pp. 571–584, 2006, doi: 10.1016/j.mechmat.2005.11.001.
H. Hadavinia, L. Kawashita, A. J. Kinloch, D. R. Moore, J. G. Williams, “A numerical analysis of the elastic-plastic peel test,” Eng. Fract. Mech., vol. 73, no. 16, pp. 2324–2335, 2006, doi: 10.1016/j.engfracmech.2006.04.022.
F. Daghia, C. Cluzel, L. Hébrard, F. Churlaud, B. Courtemanche, “The Double Drum Peel (DDP) test: a new concept to evaluate the delamination fracture toughness of cylindrical laminates,” Compos. Part A Appl. Sci. Manuf., vol. 113, pp. 83–94, 2018, doi: 10.1016/j.compositesa.2018.07.020.
Y. Sekiguchi, A. A. Hayashi, C. Sato, “Analytical determination of adhesive layer deformation for adhesively bonded double cantilever beam test considering elastic–plastic deformation,” J. Adhes., vol. 96, no. 7, pp. 647–664, 2018, doi: 10.1080/00218464.2018.1489799.
S. Abdullah, M. F. Abdullah, W. N. M. Jamil, “Ballistic performance of the steel-aluminium metal laminate panel for armoured vehicle,” J. Mech. Eng. Sci., vol. 14, no. 1, pp. 6452–6460, 2020, doi: 10.15282/jmes.14.1.2020.20.0505.
E. Simlissi, M. Martiny, S. Mercier, S. Bahi, L. Bodin, “Elastic–plastic analysis of the peel test for ductile thin film presenting a saturation of the yield stress,” Int. J. Fract., vol. 220, no. 1, pp.1–16, 2019, doi: 10.1007/s10704-019-00393-7.
J. Song, W. Y. Yueguang, “Trans-scale characterization of interface fracture in peel test for metal film/ceramic substrate systems,” Eng. Fract. Mech, vol. 221, no. 0013-7944, pp. 106679, 2019, doi: 10.1016/j.engfracmech.2019.106679.
M. S. Islam, K. S. Alfredsson, “Peeling of metal foil from a compliant substrate,” J. Adhes., pp. 1-32, 2019, doi: 10.1080/00218464.2019.1696678.
Y. Hong-hui, J. W. Hutchinson, “Delamination of thin film strips,” Thin Solid Films, vol. 423, no. 1, pp. 54–63, 2003, doi: 10.1016/S0040-6090(02)00973-2.
P. H. Martiny, F. Lani, A. J. Kinloch, T. Pardoen, “Numerical analysis of the energy contributions in peel tests: A steady-state multilevel finite element approach,” Int. J. Adhes. Adhes., vol. 28, no. 4-5, pp. 222–236, 2008, doi: 10.1016/j.ijadhadh.2007.06.005.
Y. Wei, J. W. Hutchinson, “Nonlinear delamination mechanics for thin films,” J. Mech. Phys. Solids, vol. 45, no. 7, pp. 1137-1159, 1997, doi: 10.1016/S0022-5096(96)00122-6.
V. Tvergaard, J. W. Hutchinson, “The relation between crack growth resistance and fracture process parameters in elastic-plastic solids,” J. Mech. Phys. Solids., vol. 40, no. 6, pp. 1377-1397, 1992, doi: 10.1016/0022-5096(92)90020-3.
V. Tvergaard, J. W. Hutchinson, “The influence of plasticity on mixed mode interface toughness,” J. Mech. Phys. Solids., vol. 41, no. 6, pp. 1119-1135, 1993, doi: 10.1016/0022-5096(93)90057-M.
Z. Suo, C. F. Shih, A. G. Varias, “A theory for cleavage cracking in the presence of plastic flow,” Acta Metall. Mater., vol. 40, no. 5, pp. 1551-1557, 1993, doi: 10.1016/0956-7151(93)90263-R.
Z. C. Leseman, S. P. Carlson, J. M. Thomas, “Experimental Measurements of the Strain Energy Release Rate for Stiction-Failed Microcantilevers Using a Single-Cantilever Beam Peel Test,” J. Microelectromech Syst., vol. 16, no. 1, pp. 38 – 43, 2007, doi: 10.1109/JMEMS.2006.883570.
J. A. Williams, J. J. Kauzlarich, “The influence of peel angle on the mechanics of peeling flexible adherends with arbitrary load–extension characteristics,” Tribol. Int., vol. 38, no. 11-12, pp. 951–958, 2005, doi: 10.1016/j.triboint.2005.07.024.
H. Zhao, Y. Wei, “Determination of interface properties between micron-thick metal film and ceramic substrate using peel test,” Int. J. Fract., vol. 144, pp. 103–112, 2007, doi: 10.1007/s10704-007-9083-4.
M. D. Thouless, Q. D. Yang, “A parametric study of the peel test,” Int. J. Adhes. Adhes., vol. 28, no. 4-5, pp. 176–184, 2008, doi: 10.1016/j.ijadhadh.2007.06.006.
P. Ghabezi, M. Farahani, “Characterization of cohesive model and bridging laws in mode I and II fracture in nanocomposite laminates,” J. Mech. Eng. Sci., vol. 12, no. 4, pp. 4329-4355, 2018, doi: 10.15282/jmes.12.4.2018.24.0370.
I. Georgiou, H. Hadavinia, A. Ivankovic, A. J. Kinloch, V. Tropsa, J. G. Williams, “Cohesive zone models and the plastically deforming peel test,” J. Adhes., vol. 79, no. 3, pp. 239-265, 2010, doi: 10.1080/00218460309555.
Z. Gan, S. G. Mhaisalkar, C. Zhong, Z. Sam, Z. Chen, K. Prasad, “Study of interfacial adhesion energy of multilayered ULSI thin film structures using four-point bending test,” Surf. Coat. Technol., vol. 198, no. 1-3, pp. 85–89, 2005, doi: 10.1016/j.surfcoat.2004.10.036.
P. J. J. Forschelen, A. S. J. Suiker, O. V. D. Sluis, “Effect of residual stress on the delamination response of film-substrate systems under bending,” Int. J. Solids Struct., vol. 97-98, no. 0020-7683, pp. 284-299, 2016, doi: 10.1016/j.ijsolstr.2016.07.020.
S. Chauffaille, J. Jumel, M. E. R. Shanahan, “Elasto-plastic analysis of the single cantilever beam adhesion test,” Eng. Fract. Mech., vol. 78, no. 13, pp. 2493–2504, 2011, doi: 10.1016/j.engfracmech.2011.06.009.
L. Zhang, J. Wang, “A generalized cohesive zone model of the peel test for pressure-sensitive adhesives,” Int. J. Adhes., vol. 29, no. 3, pp. 217–224, 2009, doi: 10.1016/j.ijadhadh.2008.05.002.
N. A. Fleck, J. W. Hutchinson, “Strain gradient plasticity,” Adv. Appl. Mech., vol. 33, pp. 295-361, 1997.
N. A. Fleck, J. W. Hutchinson, “A reformulation of strain gradient plasticity,” J. Mech. Phys. Solids, vol. 49, no. 10, pp. 2245–2271, 2001, doi: 10.1016/S0022-5096(01)00049-7.
Z. Sun, W. Kai-Tak, D. A. Dillard, “A theoretical and numerical study of thin film delamination using the pull-off test,” Int. J. Solids Struct., vol. 41, no. 3-4, pp. 717–730, 2004, doi: 10.1016/j.ijsolstr.2003.09.027.
S. Guo, W. Kai-Tak, D. A. Dillard, “A bending-to-stretching analysis of the blister test in the presence of tensile residual stress,” Int. J. Solids Struct., vol. 42, no. 9-10, pp. 2771–2784, 2005, doi: 10.1016/j.ijsolstr.2004.10.007.
M. Zhan, X. Chen, J. Yan, A. M. Karlsson, “Determination of uniaxial residual stress and mechanical properties by instrumented indentation,” Acta Mater., vol. 54, no. 10, pp. 2823–2832, 2006, doi: 10.1016/j.actamat.2006.02.026.
J. Yan, A. M. Karlsson, X. Chen, “Determining plastic properties of a material with residual stress by using conical indentation,” Int. J. Solids Struct., vol. 44, no. 11-12, pp. 3720–3737, 2007, doi: 10.1016/j.ijsolstr.2006.10.017.
F. Gruttmann, V. D. Pham, “A finite element model for the analysis of buckling driven delaminations of thin films on rigid substrates,” Comput. Mech., vol. 41, no. 3, pp. 361–370, 2008, doi: 10.1007/s00466-007-0191-9.
O. Onen, D. Lynford, C. Nelson, O. G. Rasim, “Thermal stresses on membrane based microdevices,” Microsyst. Technol., vol. 16, no. 11, pp. 1967–1973, 2010, doi: 10.1007/s00542-010-1130-9.
S. Hibbitt, Karlsson. ABAQUS Standard Version 6.9, Dassault Systèmes Simulia Corp., Providence, RI, USA, 2009.
V. Rizov, “Non-linear fracture behavior of double cantilever beam,” Eng. Mech., vol. 22, no. 2, pp. 95-102, 2015, doi: 10.3233/SFC-150186.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.