Effects of Isentropic Efficiency and Enhancing Strategies on Gas Turbine Performance

Authors

  • Thamir K. Ibrahim Department of Mechanical Engineering College of Engineering, University of Tikrit, Tikrit, Iraq
  • M.M. Rahman Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia.

DOI:

https://doi.org/10.15282/jmes.4.2013.3.0036

Keywords:

Gas turbine; thermodynamic; configurations; strategy; isentropic efficiency.

Abstract

Owing to their numerous advantages, gas turbine (GT) power plants have become an important technology for power generation. This paper presents a parametric analysis for different configurations of GT plants, considering the effects of isentropic compressor and turbine efficiency, which allows the selection of the optimum GT configuration for the optimum performance of a GT power plant. The computational model was developed utilizing MATLAB software. The simulated results show that the reheat GT configuration has higher power output, whereas the regenerative GT configuration has higher thermal efficiency, when considering the effects of isentropic compressor and turbine efficiency. The maximum thermal efficiency of 52.4% and the maximum power output of 268 MW are obtained with isentropic turbine efficiency. The result reveals that isentropic compressor and turbine efficiency influence significantly the performance of GTs.

References

Ahmadi, P., Dincer, I., & Rosen, M. A. (2011). Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants. Energy, 36(10), 5886-5898.

Al-Hamadan, Q. Z., & Ebaid, M. S. Y. (2006). Modeling and simulation of a gas turbine engine for power generation. ASME, Journal of Engineering for Gas Turbines and Power, 128(2), 303-311.

Ameri, M., Ahmadi, P., & Khanmohammadi, S. (2008). Exergy analysis of a 420MW combined cycle power plant. International Journal of Energy Research, 32(2), 175-183.

Basha, M., Shaahid, S. M., & Al-Hadhrami, L. (2012). Impact of fuels on performance and efficiency of gas turbine power plants. Energy Procedia, 14, 558-565.

Basrawi, F., Yamada, T., Nakanishi, K., & Naing, S. (2011). Effect of ambient temperature on the performance of micro gas turbine with cogeneration system in cold region. Applied Thermal Engineering, 31(6-7), 1058-1067.

Bassily, A. M. (2012). Numerical cost optimization and irreversibility analysis of the triple-pressure reheat steam-air cooled GT commercial combined cycle power plants. Applied Thermal Engineering, 40, 145-160.

Bertini, I., Felice, M. D., Pannicelli, A., & Pizzuti, S. (2011). Soft computing based optimization of combined cycled power plant start-up operation with fitness approximation methods. Applied Soft Computing, 11(6), 4110-4116.

Boyce, M. P. (2012). Gas turbine engineering handbook. (Fourth Edition). USA: Elsevier Inc, Imprint: Butterworth-Heinemann

Cengel Y. A., & Michael A. (2008). Thermodynamics an engineering approach. New Delhi: Tata McGraw Hill.

Chandraa, H., Aroraa, A., Kaushik, S. C., Tripathi, A., & Rai, A. (2011). Thermodynamic analysis and parametric study of an intercooled–reheat closed-cycle gas turbine on the basis of a new isentropic exponent. International Journal of Sustainable Energy, 30(2), 82-97.

Da Cunha Alves, M. A., De Franca Mendes Carneiro, H. F., Barbosa, J. R., Travieso, L. E., Pilidis, P., & Ramsden, K. W. (2001). An insight on intercooling and reheat gas turbine cycles. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 215(2), 163-171.

Farshi, L. G., Mahmoudi, S. M. S., & Mosafa, A. H. (2008). Improvement of simple and regenerative gas turbine using simple and ejector-absorption refrigeration. IUST International Journal of Engineering Science, 19(5-1), 127-136.

Godoy, E., Benz, S. J., & Scenna, N. J. (2011). A strategy for the economic optimization of combined cycle gas turbine power plants by taking advantage of useful thermodynamic relationships. Applied Thermal Engineering, 31(5), 852-871.

Godoy, E., Scenna, N. J., & Benz, S. J. (2010). Families of optimal thermodynamic solutions for combined cycle gas turbine (CCGT) power plants. Applied Thermal Engineering, 30(6-7), 569-576.

Ibrahim, T. K., Rahman, M. M., & Abdalla, A.N,. (2011a). Improvement of gas turbine performance based on inlet air cooling systems: A Technical Review. International Journal of Physical Sciences. 6(4), 620-627

Ibrahim, T. K., Rahman, M. M., & Abdalla, A. N. (2011b). Optimum gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15, 4216-4223.

Ibrahim, T. K., Rahman, M. M., & Abdalla, A.N. 2010. Study on the effective parameter of gas turbine model with intercooled compression process. Scientific Research and Essays, 5(23), 3760-3770.

Ibrahim, T. K., & Rahman, M. M. (2012a). Parametric Simulation of Triple-Pressure Reheat Combined Cycle: A Case Study. Advanced Science Letters, 13, 263-268.

Ibrahim, T. K., & Rahman, M.M. (2012b). Effect of compression ratio on performance of combined cycle gas turbine. International Journal of Energy Engineering, 2(1), 9-14.

Ibrahim, T. K., & Rahman, M. M. (2012c). Thermal impact of operating conditions on the performance of a combined cycle gas turbine. Journal of Applied Research and Technology, 10(4), 567-577.

Ilett, T., & Lawn, C. J. (2010). Thermodynamic and economic analysis of advanced and externally fired gas turbine cycles. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 224(7),901-915.

Kim, T. S., & Hwang, S. H. (2006). Part load performance analysis of recuperated gas turbines considering engine configuration and operation strategy. Energy, 31(2-3), 260-277.

Kopac, M., & Hilalci, A. (2007). Effect of ambient temperature on the efficiency of the regenerative and reheat Çatalağzı power plant in Turkey. Applied Thermal Engineering, 27(8–9), 1377-1385.

Kumar, P. (2010). Optimization of gas turbine cycle using optimization technique. Master Thesis, Mechanical Engineering Department Thapar University Patiala-147004, India.

Mahmood, F. G., & Mahdi, D. D. (2009). A new approach for enhancing performance of a gas turbine (Case Study: Khangiran Refinery). Applied Energy, 86(12), 2750-2759.

Milstein, I., & Tishler, A. (2011). Intermittently renewable energy, optimal capacity mix and prices in a deregulated electricity market. Energy Policy, 39(7), 3922-3927.

Naradasu, R. K., Konijeti, R. K., & Alluru, V. R. (2007). Thermodynamic analysis of heat recovery steam generator in combined cycle power plant. Thermal Science, 11(4), 143-156.

Poullikkas, A. (2004). Parametric study for the penetration of combined cycle technologies in to Cyprus power system. Applied Thermal Engineering, 24(11-12), 1697-1707.

Rahman, M. M., Ibrahim, T. K., Kadirgama, K., Mamat, R., & Bakar, R. A. (2011a). Influence of operation conditions and ambient temperature on performance of gas turbine power plant. Advanced Materials Research, 189-193, 3007-3013.

Rahman, M. M., Ibrahim, T. K., & Abdalla, A. N. (2011b). Thermodynamic performance analysis of gas-turbine power-plant. International Journal of the Physical Sciences, 6(14),3539-3550.

Rahman, M. M., Thamir, K. Ibrahim, Taib, M. Y., Noor, M. M., Kadirgama, K., & Bakar, R. A. (2010). Thermal analysis of open-cycle regenerator gas-turbine power-plants. World Academy of Science, Engineering and Technology, 68, 94-99.

Razak, A. M. Y. (2007). Industrial gas turbines performance and operability. Cambridge England: Woodhead Publishing Limited and CRC Press LLC.

Saravanamuttoo, H., Rogers, G., Cohen, H., & Straznicky, P. (2009). Gas turbine theory. England: Pearson Prentice Hall.

Tiwari, A. K., Islam, M., Hasan, M. M., & Khan, M. N. (2010). Thermodynamic simulation of performance of combined cycle with variation of cycle peak temperature & specific heat ratio of working fluid. International Journal of Engineering Studies, 2(3), 307-316.

Walsh, P. P., & Fletcher, P. (2004). Gas turbine performance. 2nd ed. USA: Blackwell Science Ltd. a Blackwell Publishing company.

Woudstra, N., Woudstra, T., Pirone, A., & Stelt, T. (2010). Thermodynamic evaluation of combined cycle plants. Energy Conversion and Management, 51(5), 1099-1110.

Downloads

Published

2013-06-30

How to Cite

[1]
T. K. Ibrahim and M. Rahman, “Effects of Isentropic Efficiency and Enhancing Strategies on Gas Turbine Performance”, J. Mech. Eng. Sci., vol. 4, no. 1, pp. 383–396, Jun. 2013.

Issue

Section

Article

Similar Articles

<< < 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.