Experimental study of low Reynolds number effects on aerodynamics of smooth and sinusoidal leading-edge wings in the vicinity of the ground

Authors

  • A. A. Mehraban Department of Mechanical Engineering, Faculty of Engineering,Ferdowsi University of Mashhad, P.O.Box 9177948974, Mashhad, Iran. Phone: +989151095791
  • M. H. Djavareshkian Department of Mechanical Engineering, Faculty of Engineering,Ferdowsi University of Mashhad, P.O.Box 9177948974, Mashhad, Iran. Phone: +989151095791

DOI:

https://doi.org/10.15282/jmes.15.2.2021.19.0644

Keywords:

sinusoidal leading-edge, ground effect, experimental aerodynamic, low Reynolds number, flow control

Abstract

Present study experimentally investigates the effects of ground clearance and Reynolds number on aerodynamic coefficients of smooth and sinusoidal leading-edge wings. Wind tunnel tests are conducted over a wide range of angles of attack from zero to 36 degrees, low Reynolds numbers of 30,000, 45,000 and 60,000, and also ground clearances of 0.5, 1 and ∞. Results showed that reduction of ground clearance and increment of Reynolds number cause the lift coefficient and the lift to drag ratio of both wings to be enhanced. Furthermore, the effects of Reynolds number and ground clearance on the smooth leading-edge wing are more than the sinusoidal leading-edge one. In addition, the sinusoidal leading-edge wing shows an excellent performance in the poststall region due to producing a higher lift and also by delaying the stall angle compared to the smooth leading-edge wing.

References

S. M. A. Aftab, N. A. Razak, A. S. Mohd Rafie, and K. A. Ahmad, "Mimicking the humpback whale: An aerodynamic perspective," Progress in Aerospace Sciences, vol. 84, pp. 48-69, 2016, doi:10.1016/j.paerosci.2016.03.002.

H. Johari, C. W. Henoch, D. Custodio, and A. Levshin, "Effects of leading-edge protuberances on airfoil performance," AIAA Journal, vol. 45, no. 11, pp. 2634-2642, 2007, doi:10.2514/1.28497.

D. Custodio, C. W. Henoch, and H. Johari, "Aerodynamic characteristics of finite span wings with leading-edge protuberances," AIAA Journal, vol. 53, no. 7, pp. 1878-1893, 2015, doi:10.2514/1.J053568.

J. L. E. Guerreiro and J. M. M. Sousa, "Low-Reynolds-number effects in passive stall control using sinusoidal leading edges," AIAA Journal, vol. 50, no. 2, pp. 461-469, 2012, doi:10.2514/1.J051235.

Z. Wei, T. H. New, and Y. D. Cui, "Aerodynamic performance and surface flow structures of leading-edge tubercled tapered swept-back wings," AIAA Journal, vol. 56, no. 1, pp. 423-431, 2017, doi:10.2514/1.J055663.

M. D. Bolzon, R. M. Kelso, and M. Arjomandi, "Force measurements and wake surveys of a swept tubercled wing," Journal of Aerospace Engineering, vol. 30, no. 3, pp. 04016085, 2017, doi:10.1061/(ASCE)AS.1943-5525.0000683.

A. Samiee, M. H. Djavareshkian, B. F. Feshalami, and E. Esmaeilifar, "Improvement of airfoils aerodynamic efficiency by thermal camber phenomenon at low reynolds number," Journal of Aerospace Technology and Management, pp. 10, 2018, doi:10.5028/jatm.v10.954.

J. Sepahi-Younsi, B. Forouzi Feshalami, S. R. Maadi, and M. R. Soltani, "Boundary layer suction for high-speed air intakes: A review," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 233, pp. 3459-3481, 2019, doi:10.1177/0954410018793262.

M. M. Zhang, G. F. Wang, and J. Z. Xu, "Aerodynamic control of low-Reynolds-number airfoil with leading-edge protuberances," AIAA Journal, vol. 51, no. 8, pp. 1960-1971, 2013, doi:10.2514/1.J052319.

N. Rostamzadeh, R. M. Kelso, and B. Dally, "A numerical investigation into the effects of Reynolds number on the flow mechanism induced by a tubercled leading edge," Theoretical and Computational Fluid Dynamics, vol. 31, no. 1, pp. 1-32, 2017, doi:10.1007/s00162-016-0393-x.

S. Sudhakar, N. Karthikeyan, and L. Venkatakrishnan, "Influence of leading edge tubercles on aerodynamic characteristics of a high aspect-ratio UAV," Aerospace Science and Technology, vol. 69, pp. 281-289, 2017, doi:10.1016/j.ast.2017.06.031.

K. Vedula, B. Cetegen, J. Madore, and M. Bellinger, "Biomimetic tubercle leading-edge airfoils in transitional Reynolds number regime," in 2018 Flow Control Conference (AIAA AVIATION Forum: American Institute of Aeronautics and Astronautics, 2018.

K. Heesu, K. Jooha, and C. Haecheon, "Flow structure modifications by leading-edge tubercles on a 3D wing," Bioinspiration & Biomimetics, vol. 13, no. 6, pp. 066011, 2018, doi:10.1088/1748-3190/aae6fc.

M. L. Post, R. Decker, A. R. Sapell, and J. S. Hart, "Effect of bio-inspired sinusoidal leading-edges on wings," Aerospace Science and Technology, vol. 81, pp. 128-140, 2018, doi:10.1016/j.ast.2018.07.043.

V. A. Sepetauskas, B. Massucatto, A. A. de Paula, and R. G. da Silva, "Wavy leading edge phenomena on transonic flow regime," in 2018 Flow Control Conference (AIAA AVIATION Forum: American Institute of Aeronautics and Astronautics, 2018.

A. Esmaeili, H. E. C. Delgado, and J. M. M. Sousa, "Numerical simulations of low-Reynolds-number flow past finite wings with leading-edge protuberances," Journal of Aircraft, vol. 55, no. 1, pp. 226-238, 2018, doi:10.2514/1.c034591.

Z. Wei, T. H. New, L. Lian, and Y. Zhang, "Leading-edge tubercles delay flow separation for a tapered swept-back wing at very low Reynolds number," Ocean Engineering, vol. 181, pp. 173-184, 2019, doi:10.1016/j.oceaneng.2019.04.018.

T. Yasuda, K. Fukui, K. Matsuo, H. Minagawa, and R. Kurimoto, "Effect of the Reynolds number on the performance of a NACA0012 wing with leading edge protuberance at low Reynolds numbers," Flow, Turbulence and Combustion, vol. 102, pp. 435-455, 2018, doi:10.1007/s10494-018-9978-3.

B. K. Sreejith and A. Sathyabhama, "Experimental and numerical study of laminar separation bubble formation on low Reynolds number airfoil with leading-edge tubercles," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 42, no. 4, pp. 171, 2020, doi:10.1007/s40430-020-2229-2.

A. A. Mehraban, M. H. Djavareshkian, Y. Sayegh, B. Forouzi Feshalami, Y. Azargoon, A. H. Zaree, and M. Hassanalian, "Effects of smart flap on aerodynamic performance of sinusoidal leading-edge wings at low Reynolds numbers," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 235, no. 4, pp. 439-450, 2021, doi:10.1177/0954410020946903.

C. Papadopoulos, V. Katsiadramis, and K. Yakinthos, "Influence of tubercles’ spanwise distribution on swept wings for unmanned aerial vehicles," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 0, no. 0, pp. 0954410020919583, 2020, doi:10.1177/0954410020919583.

M. H. Djavareshkian, A. Esmaeli, and A. Parsani, "Aerodynamics of smart flap under ground effect," Aerospace Science and Technology, vol. 15, no. 8, pp. 642-652, 2011, doi:10.1016/j.ast.2011.01.005.

L. C. Johansson, L. Jakobsen, and A. Hedenström, "Flight in ground effect dramatically reduces aerodynamic costs in Bats," Current Biology, vol. 28, no. 21, pp. 3502-3507, 2018, doi:10.1016/j.cub.2018.09.011.

K. H. Jung, H. H. Chun, and H. J. Kim, "Experimental investigation of wing-in-ground effect with a NACA6409 section," Journal of Marine Science and Technology, vol. 13, no. 4, pp. 317-327, 2008, doi:10.1007/s00773-008-0015-4.

M. H. Djavareshkian, A. Esmaeli, A. Parsania, and A. Ziaforoughi, "Three-dimensional investigation of smart flap aerodynamics for a WIG vehicle," Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, vol. 9, pp. 51-60, 2011, doi:10.2322/tastj.9.51.

E. Esmaeilifar, M. H. Djavareshkian, B. Forouzi Feshalami, and A. Esmaeili, "Hydrodynamic simulation of an oscillating hydrofoil near free surface in critical unsteady parameter," Ocean Engineering, vol. 141, pp. 227-236, 2017, doi:10.1016/j.oceaneng.2017.06.037.

M. W. Lohry, D. Clifton, and L. Martinelli, "Characterization and design of tubercle leading-edge wings," In: Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, pp. 9-13, 2012.

T. J. Mueller, "Aerodynamic measurements at low raynolds numbers for fixed wing micro-air vehicles," Notre Dame University, Department of Aerospace and Mechanical Engineering, 2000.

B. Forouzi Feshalami, M. Djavareshkian, A. Zaree, M. Yousefi, and A. Mehraban, "The role of wing bending deflection in the aerodynamics of flapping micro aerial vehicles in hovering flight," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 233, no. 10, pp. 3749-3761, 2019, doi:10.1177/0954410018806081.

B. F. Feshalami, M. Djavareshkian, M. Yousefi, A. Zaree, and A. Mehraban, "Experimental investigation of flapping mechanism of the black-headed gull in forward flight," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 233, no. 12, pp. 4333-4349, 2019, doi:10.1177/0954410018819292.

K. L. Hansen, N. Rostamzadeh, R. M. Kelso, and B. B. Dally, "Evolution of the streamwise vortices generated between leading edge tubercles," Journal of Fluid Mechanics, vol. 788, pp. 730-766, 2016, doi:10.1017/jfm.2015.611.

N. Rostamzadeh, K. L. Hansen, R. M. Kelso, and B. B. Dally, "The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil's performance with undulating leading edge modification," Physics of Fluids, vol. 26, no. 10, pp. 107101, 2014, doi:10.1063/1.4896748.

J. Winslow, H. Otsuka, B. Govindarajan, and I. Chopra, "Basic understanding of airfoil characteristics at low Reynolds numbers (104–105)," Journal of Aircraft, vol. 55, no. 3, pp. 1050-1061, 2018, doi:10.2514/1.c034415.

Downloads

Published

2021-06-18

How to Cite

[1]
A. A. Mehraban and M. H. Djavareshkian, “Experimental study of low Reynolds number effects on aerodynamics of smooth and sinusoidal leading-edge wings in the vicinity of the ground ”, J. Mech. Eng. Sci., vol. 15, no. 2, pp. 8205–8218, Jun. 2021.

Issue

Section

Article