A perspective review: Technical study of combining phase contrast magnetic resonance imaging and computational fluid dynamics for blood flow on carotid bifurcation artery
DOI:
https://doi.org/10.15282/jmes.14.4.2020.25.0599Keywords:
Phase contrast magnetic resonance imaging (PC-MRI), computational fluid dynamics (CFD), carotid bifurcation artery (CBA), HemodynamicsAbstract
Nowadays, the knowledge of precise blood flow patterns in human blood vessels, especially focusing on Carotid Bifurcations Artery (CBA) area by using computational and modern techniques are very important to develop our understanding regarding to human diseases for both essential research and clinical treatment. This paper tends to discuss the progress regarding to the integration between Phase Contrast Magnetic Resonance Imaging (PC-MRI) and Computational Fluid Dynamics (CFD), specifically to the human diseases. We technically define the model geometry reconstruction, review both PC-MRI and CFD methods to create mesh models, obtain boundary conditions, define the governing equations in CFD, define the material properties, and assumptions used in running the CFD simulations. Detailed information on PC-MRI and CFD is provided in tables, such as the MRI setup, software used, CFD model setup, measurement parameter, and summary of the result contribution from each reviewed article. Numerous fusions between PC-MRI and CFD are specified by summarizing the investigation carried out by significant group’s research, reviewing the important outcomes, and discussing the techniques, drawbacks and possibilities for further study. We hope that this perspective analysis will encourage a fusion of PC-MRI and CFD research contributing to continuous advancement of human health with close cooperation and collaboration among clinicians and engineers.
References
H. Luo, J. D. Baum, and R. Lo, “An accurate , fast , matrix-free implicit method for computing unsteady flows on unstructured grids,” vol. 30, pp. 137–159, 2001.
X. Lin, X. Li, and X. Lin, “A Review on Applications of Computational Methods,” no. July, pp. 1–17, 2020.
I. Balashazy, T. Heistracher, and W. Hofmann, “Air Flow and Particle Deposition Patterns in Bronchial Airway Bifurcations: The Effect of Different CFD Models and Bifurcation Geometries,” J. Aerosol Med., vol. 9, no. 3, pp. 287–301, Jan. 1996, doi: 10.1089/jam.1996.9.287.
P. Verdonck and K. Perktold, Intra and Extracorporeal Cardiovascular Fluid Dynamics - 2 Volume Set, Advances i. Southampton SO40 7AA, United Kingdom.: WIT Press, 2000.
S. J. Sherwin et al., “The Influence of Out-of-Plane Geometry on the Flow Within a Distal End-to-Side Anastomosis ,” J. Biomech. Eng., vol. 122, no. 1, pp. 86–95, Jul. 1999, doi: 10.1115/1.429630.
T. Ebbers, L. Wigstro, A. F. Bolger, J. Engvall, and M. Karlsson, “Estimation of Relative Cardiovascular Pressures Using Time-Resolved Three-Dimensional Phase Contrast MRI,” vol. 879, pp. 872–879, 2001.
S. Prakash and C. R. Ethier, “Requirements for Mesh Resolution in 3D Computational Hemodynamics ,” J. Biomech. Eng., vol. 123, no. 2, pp. 134–144, Dec. 2000, doi: 10.1115/1.1351807.
B. Condon and D. M. Hadley, “Potential MR Hazard to Patients With Metallic Heart Valves : The Lenz Effect,” vol. 176, pp. 171–176, 2000.
N. B. Wood et al., “Combined MR Imaging and CFD Simulation of Flow in the Human Descending Aorta,” vol. 713, pp. 699–713, 2001.
J. Wang et al., “Carotid Bifurcation With Tandem Stenosis—A Patient-Specific Case Study Combined in vivo Imaging, in vitro Histology and in silico Simulation,” Front. Bioeng. Biotechnol., vol. 7, no. November, pp. 1–11, 2019, doi: 10.3389/fbioe.2019.00349.
N. H. Johari et al., “Disturbed Flow in a Stenosed Carotid Artery Bifurcation: Comparison of RANS-Based Transitional Model and les with Experimental Measurements,” Int. J. Appl. Mech., vol. 11, no. 4, pp. 1–21, 2019, doi: 10.1142/S1758825119500327.
S. Z. Zhao et al., “Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation,” J. Biomech., vol. 33, no. 8, pp. 975–984, 2000, doi: 10.1016/S0021-9290(00)00043-9.
Q. Long, X. Y. Xu, B. Ariff, S. A. Thom, A. D. Hughes, and A. V Stanton, “Reconstruction of Blood Flow Patterns in a Human Carotid Bifurcation : A Combined CFD and MRI Study,” vol. 311, pp. 299–311, 2000.
H. M. Ladak, J. S. Milner and, and D. A. Steinman, “Rapid Three-Dimensional Segmentation of the Carotid Bifurcation From Serial MR Images,” J. Biomech. Eng., vol. 122, no. 1, pp. 96–99, Aug. 1999, doi: 10.1115/1.429646.
J. S. Milner, J. A. Moore, B. K. Rutt, and D. A. Steinman, “Hemodynamics of human carotid artery bifurcations : Computational studies with models reconstructed from magnetic resonance imaging of normal subjects,” pp. 143–156, 1998.
J. Thomas, J. Milner, and D. Steinman, “On the Influence of Vessel Planarity on Local Hemodynamics At the Human Carotid Bifurcation,” Biorheology, vol. 39, pp. 443–448, Feb. 2002.
J. R. Cebral, P. J. Yim, R. Loehner, O. Soto, H. Marcos, and P. L. Choyke, “New methods for computational fluid dynamics modeling of carotid artery from magnetic resonance angiography,” in Proc.SPIE, May 2001, vol. 4321, [Online]. Available: https://doi.org/10.1117/12.428135.
Q. Long, X. Y. Xu, M. Bourne, and T. M. Griffith, “Numerical Study of Blood Flow in an Anatomically Realistic Aorto-Iliac Bifurcation Generated From MRI Data,” vol. 576, pp. 565–576, 2000.
Q. Long, X. Y. Xu, M. W. Collins, M. Bourne, and T. M. Griffith, “Magnetic resonance image processing and structured grid generation of a human abdominal bifurcation,” Comput. Methods Programs Biomed., vol. 56, no. 3, pp. 249–259, 1998, doi: https://doi.org/10.1016/S0169-2607(98)00008-X.
Q. Long, X. Y. Xu, M. W. Collins, T. M. Griffith, and M. Bourne, “The combination of magnetic resonance angiography and computational fluid dynamics: a critical review.,” Crit. Rev. Biomed. Eng., vol. 26, no. 4, pp. 227–274, 1998, doi: 10.1615/critrevbiomedeng.v26.i4.10.
X. Y. Xu, Q. Long, M. W. Collins, M. Bourne, and T. M. Griffith, “Reconstruction of blood flow patterns in human arteries,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol. 213, no. 5, pp. 411–421, May 1999, doi: 10.1243/0954411991535022.
A. Spilt et al., “Reproducibility of total cerebral blood flow measurements using phase contrast magnetic resonance imaging,” J. Magn. Reson. Imaging, vol. 16, no. 1, pp. 1–5, 2002, doi: 10.1002/jmri.10133.
S. Prevrhal, C. H. Forsythe, R. J. Harnish, M. Saeed, and B. M. Yeh, “CT angiographic measurement of vascular blood flow velocity by using projection data,” Radiology, vol. 261, no. 3, pp. 923–929, 2011, doi: 10.1148/radiol.11110617.
L. Sheh Hong, M. Azrul Hisham Mohd Adib, M. Uzair Matalif, M. Shafie Abdullah, N. Hartini Mohd Taib, and R. Hassan, “Modeling and Simulation of Blood Flow Analysis on Simplified Aneurysm Models,” IOP Conf. Ser. Mater. Sci. Eng., vol. 917, p. 012067, 2020, doi: 10.1088/1757-899x/917/1/012067.
S. H. Lim, M. A. H. Mohd Adib, M. Abdullah, and R. Hassan, “Qualitative and Quantitative Comparison of Hemodynamics Between MRI Measurement and CFD Simulation on Patient-specific Cerebral Aneurysm – A Review,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 68, pp. 112–123, Mar. 2020, doi: 10.37934/arfmts.68.2.112123.
K. H. Parker and C. G. Caro, “Flow in the macrocirculation: basic concepts from fluid mechanics,” Magn. Reson. Angiogr. concepts Appl. St. Louis Mosby, pp. 134–145, 1992.
C. A. Taylor and D. A. Steinman, “Image-based modeling of blood flow and vessel wall dynamics: Applications, methods and future directions: Sixth international bio-fluid mechanics symposium and workshop, March 28-30, 2008 Pasadena, California,” Ann. Biomed. Eng., vol. 38, no. 3, pp. 1188–1203, 2010, doi: 10.1007/s10439-010-9901-0.
R. J. Van Der Geest, A. De Roos, E. E. Van Der Wall, and J. H. C. Reiber, “Quantitative analysis of cardiovascular MR images,” Int. J. Card. Imaging, vol. 13, no. 3, pp. 247–258, 1997, doi: 10.1023/A:1005869509149.
J. R. Cebral and R. Löhner, “From medical images to anatomically accurate finite element grids,” Int. J. Numer. Methods Eng., vol. 51, no. 8, pp. 985–1008, Jul. 2001, doi: 10.1002/nme.205.
J. A. Moore, D. A. Steinman, and C. R. Ethier, “Computational blood flow modelling: Errors associated with reconstructing finite element models from magnetic resonance images,” J. Biomech., vol. 31, no. 2, pp. 179–184, 1997, doi: 10.1016/S0021-9290(97)00125-5.
F. P. Glor, J. J. M. Westenberg, J. Vierendeels, M. Danilouchkine, and P. Verdonck, “Validation of the Coupling of Magnetic Resonance Imaging Velocity Measurements with Computational Fluid Dynamics in a U Bend,” Artif. Organs, vol. 26, no. 7, pp. 622–635, Jul. 2002, doi: 10.1046/j.1525-1594.2002.07085.x.
S. J. Weston, N. B. Wood, G. Tabor, A. D. Gosman, and D. N. Firmin, “Combined MRI and CFD analysis of fully developed steady and pulsatile laminar flow through a bend,” J. Magn. Reson. Imaging, vol. 8, no. 5, pp. 1158–1171, Sep. 1998, doi: 10.1002/jmri.1880080523.
R. Botnar, G. Rappitsch, M. Beat Scheidegger, D. Liepsch, K. Perktold, and P. Boesiger, “Hemodynamics in the carotid artery bifurcation: A comparison between numerical simulations and in vitro MRI measurements,” J. Biomech., vol. 33, no. 2, pp. 137–144, 2000, doi: 10.1016/S0021-9290(99)00164-5.
A. D. Caballero and S. Laín, “A Review on Computational Fluid Dynamics Modelling in Human Thoracic Aorta,” Cardiovasc. Eng. Technol., vol. 4, no. 2, pp. 103–130, 2013, doi: 10.1007/s13239-013-0146-6.
C. G. Caro, T. J. Pedley, R. C. Schroter, and W. A. Seed, The Mechanics of the Circulation. Oxford University Press, 1978.
F. M. A. Box, R. J. Van Der Geest, M. C. M. Rutten, and J. H. C. Reiber, “The influence of flow, vessel diameter, and non-Newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow,” Invest. Radiol., vol. 40, no. 5, pp. 277–294, 2005, doi: 10.1097/01.rli.0000160550.95547.22.
C. C. Hamakiotes and S. A. Berger, “Periodic flows through curved tubes: the effect of the frequency parameter,” J. Fluid Mech., vol. 210, pp. 353–370, 1990, doi: DOI: 10.1017/S002211209000132X.
Y. Komai and K. Tanishita, “Fully developed intermittent flow in a curved tube,” J. Fluid Mech., vol. 347, pp. 263–287, 1997, doi: DOI: 10.1017/S0022112097006538.
T. Naruse and K. Tanishita, “Large Curvature Effect on Pulsatile Entrance Flow in a Curved Tube: Model Experiment Simulating Blood Flow in an Aortic Arch,” J. Biomech. Eng., vol. 118, no. 2, pp. 180–186, May 1996, doi: 10.1115/1.2795957.
a Santamarina, E. Weydahl, J. M. Siegel, and J. E. Moore, “Computational Analysis of Flow in a Curved Tube Model of the Coronary Arteries Effects of Time-varying Curvature,” Ann. Biomed. Eng., vol. 26, pp. 944–954, 1998.
D. A. Steinman, “Image-based computational fluid dynamics modeling in realistic arterial geometries,” Ann. Biomed. Eng., vol. 30, no. 4, pp. 483–497, 2002, doi: 10.1114/1.1467679.
M. Sumida, K. Sudou, and H. Wada, “Pulsating Flow in a Curved Pipe (Secondary Flow),” JSME Int. journal. Ser. 2, Fluids Eng. heat Transf. power, Combust. Thermophys. Prop., vol. 32, pp. 523–531, Nov. 1989, doi: 10.1299/jsmeb1988.32.4_523.
S. L. Waters and T. J. Pedley, “Oscillatory flow in a tube of time-dependent curvature. Part 1. Perturbation to flow in a stationary curved tube,” J. Fluid Mech., vol. 383, pp. 327–352, 1999, doi: DOI: 10.1017/S0022112099004085.
P. W. Longest and S. Vinchurkar, “Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data,” Med. Eng. Phys., vol. 29, no. 3, pp. 350–366, 2007, doi: 10.1016/j.medengphy.2006.05.012.
O. Sahni, K. E. Jansen, M. S. Shephard, C. A. Taylor, and M. W. Beall, “Adaptive boundary layer meshing for viscous flow simulations,” Eng. Comput., vol. 24, no. 3, pp. 267–285, 2008, doi: 10.1007/s00366-008-0095-0.
J. Chen and X.-Y. Lu, “Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch,” J. Biomech., vol. 39, no. 5, pp. 818–832, 2006, doi: https://doi.org/10.1016/j.jbiomech.2005.02.003.
B. M. Johnston, P. R. Johnston, S. Corney, and D. Kilpatrick, “Non-Newtonian blood flow in human right coronary arteries: steady state simulations,” J. Biomech., vol. 37, no. 5, pp. 709–720, 2004, doi: https://doi.org/10.1016/j.jbiomech.2003.09.016.
D. Liepsch, “An introduction to biofluid mechanics—basic models and applications,” J. Biomech., vol. 35, no. 4, pp. 415–435, 2002, doi: https://doi.org/10.1016/S0021-9290(01)00185-3.
B. M. Johnston, P. R. Johnston, S. Corney, and D. Kilpatrick, “Non-Newtonian blood flow in human right coronary arteries: Transient simulations,” J. Biomech., vol. 39, no. 6, pp. 1116–1128, 2006, doi: https://doi.org/10.1016/j.jbiomech.2005.01.034.
B. S. Narang, “Exact solution for entrance region flow between parallel plates,” Int. J. Heat Fluid Flow, vol. 4, no. 3, pp. 177–181, 1983, doi: 10.1016/0142-727X(83)90066-8.
C. Y. Wang, “Exact Solutions of the Steady-State Navier-Stokes Equations,” Annu. Rev. Fluid Mech., vol. 23, no. 1, pp. 159–177, 1991, doi: 10.1146/annurev.fl.23.010191.001111.
X. Liu, F. Pu, Y. Fan, X. Deng, D. Li, and S. Li, “A numerical study on the flow of blood and the transport of LDL in the human aorta: The physiological significance of the helical flow in the aortic arch,” Am. J. Physiol. - Hear. Circ. Physiol., vol. 297, no. 1, pp. 163–170, 2009, doi: 10.1152/ajpheart.00266.2009.
T. J. Pedley, The Fluid Mechanics of Large Blood Vessels. Cambridge: Cambridge University Press, 1980.
S. Lownie, W. Kalata, F. Loth, and D. W. Holdsworth, PIV-Measured Versus CFD-Predicted Flow Dynamics in Anatomically Realistic Cerebral Aneurysm Models, no. May. 2008.
R. S. Reneman, A. P. G. Hoeks, and N. Westerhof, “Non-invasive assessment of artery wall properties in humans-methods and interpretation,” J Vasc Invest, vol. 2, no. 2, pp. 53–64, 1996.
B. H. L. Falserri, K. M. Kiser, G. P. Francis, and E. R. Belmore, “Sequential Velocity Development in the Ascending and Descending Aorta of the Dog,” vol. XXXI, pp. 328–338, 1972.
X. He and D. N. Ku, “Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions,” J. Biomech. Eng., vol. 118, no. 1, pp. 74–82, Feb. 1996, doi: 10.1115/1.2795948.
R. M. Nerem, J. A. Rumberger JR, D. R. Gross, W. W. Muir, and G. L. Geiger, “Hot film coronary artery velocity measurements in horses1,” Cardiovasc. Res., vol. 10, no. 3, pp. 301–313, May 1976, doi: 10.1093/cvr/10.3.301.
W. A. Seed and N. B. Wood, “Velocity patterns in the aorta1,” Cardiovasc. Res., vol. 5, no. 3, pp. 319–330, Jul. 1971, doi: 10.1093/cvr/5.3.319.
U. Morbiducci, R. Ponzini, D. Gallo, C. Bignardi, and G. Rizzo, “Inflow boundary conditions for image-based computational hemodynamics : Impact of idealized versus measured velocity profiles in the human aorta,” J. Biomech., vol. 46, no. 1, pp. 102–109, 2013, doi: 10.1016/j.jbiomech.2012.10.012.
J. Renner, D. Loyd, T. Länne, and M. Karlsson, “Is a Flat Inlet Profile Sufficient for WSS Estimation in the Aortic Arch ? Is a Flat Inlet Profile Sufficient for WSS Estimation in the Aortic Arch ?,” no. May 2014, 2008.
I. C. Campbell, J. Ries, S. S. Dhawan, A. A. Quyyumi, W. R. Taylor, and J. N. Oshinski, “Effect of Inlet Velocity Profiles on Patient-Specific Computational Fluid Dynamics Simulations of the Carotid Bifurcation,” J. Biomech. Eng., vol. 134, no. 5, May 2012, doi: 10.1115/1.4006681.
L. Morris, P. Delassus, P. Grace, F. Wallis, M. Walsh, and T. Mcgloughlin, “Effects of flat, parabolic and realistic steady flow inlet profiles on idealised and realistic stent graft fits through Abdominal Aortic Aneurysms (AAA),” Med. Eng. Phys., vol. 28, pp. 19–26, Feb. 2006, doi: 10.1016/j.medengphy.2005.04.012.
K. Moyle, L. Antiga, and D. Steinman, “Inlet Conditions for Image-Based CFD Models of the Carotid Bifurcation: Is it Reasonable to Assume Fully Developed Flow?,” J. Biomech. Eng., vol. 128, pp. 371–379, Jul. 2006, doi: 10.1115/1.2187035.
J. G. M. Yers, J. A. M. Oore, M. O. Jha, K. W. J. Ohnston, and C. R. E. Thier, “Factors Influencing Blood Flow Patterns in the Human Right Coronary Artery,” vol. 29, pp. 109–120, 2001, doi: 10.1114/1.1349703.
J.-F. Gerbeau, M. Vidrascu, and P. Frey, “Fluid–structure interaction in blood flows on geometries based on medical imaging,” Comput. Struct., vol. 83, no. 2, pp. 155–165, 2005, doi: https://doi.org/10.1016/j.compstruc.2004.03.083.
F. N. V. A. N. D. E. Vosse, J. D. E. Hart, D. Bessems, and A. Segal, “Finite-element-based computational methods for cardiovascular fluid-structure interaction,” pp. 335–368, 2003.
D. Gallo et al., “On the Use of In Vivo Measured Flow Rates as Boundary Conditions for Image-Based Hemodynamic Models of the Human Aorta: Implications for Indicators of Abnormal Flow,” Ann. Biomed. Eng., vol. 40, no. 3, pp. 729–741, 2012, doi: 10.1007/s10439-011-0431-1.
C. H. A. T. Aylor, C. H. P. C. Heng, L. E. A. E. Spinosa, B. E. T. T. Ang, D. A. P. Arker, and R. O. J. H. Erfkens, “In Vivo Quantification of Blood Flow and Wall Shear Stress in the Human Abdominal Aorta During Lower Limb Exercise,” vol. 30, pp. 402–408, 2002, doi: 10.1114/1.1476016.
E. J. Bekkers and C. A. Taylor, “Multiscale Vascular Surface Model Generation From Medical Imaging Data Using Hierarchical Features,” IEEE Trans. Med. Imaging, vol. 27, no. 3, pp. 331–341, 2008.
M. D. Ford et al., “Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics,” IEEE Trans. Med. Imaging, vol. 24, no. 12, pp. 1586–1592, 2005, doi: 10.1109/TMI.2005.859204.
J. P. K. U. Oy, C. H. J. E. Lkins, and C. H. A. T. Aylor, “Comparison of CFD and MRI Flow and Velocities in an In Vitro Large Artery Bypass Graft Model,” vol. 33, no. 3, pp. 257–269, 2005, doi: 10.1007/s10439-005-1729-7.
R. Y. A. N. B. W. Icker, M. I. V. M. C. C. Onnell, and C. H. A. T. Aylor, “In Vitro Validation of Finite Element Analysis of Blood Flow in Deformable Models,” vol. 39, no. 7, pp. 1947–1960, 2011, doi: 10.1007/s10439-011-0284-7.
N. O. J. P. Elc, C. H. K. Z. Arins, and C. H. A. T. Aylor, “In Vivo Validation of Numerical Prediction of Blood Flow in Arterial Bypass Grafts,” vol. 30, pp. 743–752, 2002, doi: 10.1114/1.1496086.
V. L. Rayz et al., “Numerical Simulations of Flow in Cerebral Aneurysms: Comparison of CFD Results and In Vivo MRI Measurements,” J. Biomech. Eng., vol. 130, no. 5, Aug. 2008, doi: 10.1115/1.2970056.
L. Boussel et al., “Phase-Contrast Magnetic Resonance Imaging Measurements in Intracranial Aneurysms In Vivo of Flow Patterns , Velocity Fields , and Wall Shear Stress : Comparison with Computational Fluid Dynamics,” vol. 417, pp. 409–417, 2009, doi: 10.1002/mrm.21861.
J. Lantz and T. Ebbers, “A new method for obtaining high-resolution velocity data from magnetic resonance imaging?,” 2013, no. Cmiv, p. 2012, [Online]. Available: http://www.malmokongressbyra.se/kongress/download/mtd/1d1.pdf.
M. Watanabe, R. Kikinis, and C.-F. Westin, “Level set-based integration of segmentation and computational fluid dynamics for flow correction in phase contrast angiography,” Acad. Radiol., vol. 10, no. 12, pp. 1416–1423, Dec. 2003, doi: 10.1016/S1076-6332(03)00509-9.
P. van Ooij et al., “Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics,” NMR Biomed., vol. 25, no. 1, pp. 14–26, Jan. 2012, doi: 10.1002/nbm.1706.
J. Jiang, K. Johnson, K. Valen-Sendstad, K.-A. Mardal, O. Wieben, and C. Strother, “Flow characteristics in a canine aneurysm model: A comparison of 4D accelerated phase-contrast MR measurements and computational fluid dynamics simulations,” Med. Phys., vol. 38, no. 11, pp. 6300–6312, Nov. 2011, doi: 10.1118/1.3652917.
H. Isoda et al., “Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics,” pp. 913–920, 2010, doi: 10.1007/s00234-009-0634-4.
L. Boussel et al., “Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: Comparison with computational fluid dynamics,” Magn. Reson. Med., vol. 61, no. 2, pp. 409–417, 2009, doi: 10.1002/mrm.21861.
S. Meier, A. Nennemuth, N. Tchipev, A. Harloff, M. Markl, and T. Preusser, “Towards Patient-Individual Blood Flow Simulations based on PC-MRI Measurements,” 2011.
U. PhD, I. Marshall, M. PhD, Q. Long, X. Xu, and P. Hoskins, “MRI Measurement of wall shear stress vectors in bifurcation models and comparison with CFD predictions,” J. Magn. Reson. Imaging, vol. 14, pp. 563–573, Oct. 2001, doi: 10.1002/jmri.1220.
P. Van Ooij, J. J. Schneiders, H. A. Marquering, C. B. Majoie, E. Van Bavel, and A. J. Nederveen, “3D cine phase-contrast MRI at 3T in intracranial aneurysms compared with patient-specific computational fluid dynamics,” Am. J. Neuroradiol., vol. 34, no. 9, pp. 1785–1791, 2013, doi: 10.3174/ajnr.A3484.
S. Z. Z. Hao, P. P. Apathanasopoulou, Q. L. Ong, and I. M. Arshall, “Comparative Study of Magnetic Resonance Imaging and Image-Based Computational Fluid Dynamics for Quantification of Pulsatile Flow in a Carotid Bifurcation Phantom,” vol. 31, pp. 962–971, 2003, doi: 10.1114/1.1590664.
P. Papathanasopoulou et al., “MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions,” J. Magn. Reson. Imaging, vol. 17, no. 2, pp. 153–162, 2003, doi: 10.1002/jmri.10243.
I. Marshall, S. Zhao, P. Papathanasopoulou, P. Hoskins, and X. Y. Xu, “MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models,” J. Biomech., vol. 37, no. 5, pp. 679–687, 2004, doi: 10.1016/j.jbiomech.2003.09.032.
S. Jin, J. Oshinski, and D. P. Giddens, “Effects of Wall Motion and Compliance on Flow Patterns in the Ascending Aorta ,” J. Biomech. Eng., vol. 125, no. 3, pp. 347–354, Jun. 2003, doi: 10.1115/1.1574332.
J. Lantz, J. Renner, and M. Karlsson, “Wall shear stress in a subject specific human aorta — Influence of fluid-structure interaction,” Int. J. Appl. Mech., vol. 03, no. 04, pp. 759–778, Dec. 2011, doi: 10.1142/S1758825111001226.
A. Leuprecht, S. Kozerke, and P. Boesiger, “Blood flow in the human ascending aorta : a combined MRI and CFD study,” pp. 387–404, 2003.
J. Renner and G. Roland, “A Method for Subject Specific Estimation of Aortic Wall Shear Stress,” vol. 6, no. 3, pp. 49–57, 2009.
F. P. P. Tan, A. Borghi, R. H. Mohiaddin, N. B. Wood, S. Thom, and X. Y. Xu, “Analysis of flow patterns in a patient-specific thoracic aortic aneurysm model,” Comput. Struct., vol. 87, no. 11–12, pp. 680–690, 2009, doi: 10.1016/j.compstruc.2008.09.007.
C-Y. Wen, En, A-S. Yang, L-Y. Tseng, and J-W. Chai, “Investigation of Pulsatile Flowfield in Healthy Thoracic Aorta Models,” vol. 38, no. 2, pp. 391–402, 2010, doi: 10.1007/s10439-009-9835-6.
H. Isoda et al., “Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics,” Neuroradiology, vol. 52, no. 10, pp. 913–920, 2010, doi: 10.1007/s00234-009-0634-4.
M. A. H. Mohd Adib, S. Ii, Y. Watanabe, and S. Wada, “Minimizing the blood velocity differences between phase-contrast magnetic resonance imaging and computational fluid dynamics simulation in cerebral arteries and aneurysms,” Med. Biol. Eng. Comput., vol. 55, no. 9, pp. 1605–1619, 2017, doi: 10.1007/s11517-017-1617-y.
S. Ii, M. A. H. M. Adib, Y. Watanabe, and S. Wada, “Physically consistent data assimilation method based on feedback control for patient-specific blood flow analysis,” Int. j. numer. method. biomed. eng., vol. 34, no. 1, pp. 1–20, 2018, doi: 10.1002/cnm.2910.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.