Computational analysis to predict the effect of pre-bifurcation stenosis on the hemodynamics of the internal and external carotid arteries

  • Hugo Bouteloup Department of Mechanical Engineering, University of Birmingham, B15 2TT, United Kingdom.
  • Johann Guimaraes de Oliveira Marinho Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Cidade Universitária Recife, Recife, Brazil.
  • Surapong chatpun Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand. Phone: +66880891379
  • Daniel M. Espino Department of Mechanical Engineering, University of Birmingham, B15 2TT, United Kingdom.
Keywords: Carotid artery, computational fluid dynamics, hemodynamics, magnetic resonance, patient-specific stenosis

Abstract

This study assessed the hemodynamics of a patient-specific multiple stenosed common carotid artery including its bifurcation into internal and external carotid arteries; ICA and ECA, respectively. A three-dimensional computational model of the common carotid artery was reconstructed using a process of segmentation. Computational fluid dynamics was applied with the assumption that blood is Newtonian and incompressible under pulsatile conditions through the stenotic artery and subsequent bifurcation. Blood was modelled as ‘normal’ and ‘hyperglycaemic’. A region of large recirculation was found to form at bifurcation. The asymmetric velocity flow profile through the ICA was evident through the cardiac cycle with higher velocity at the inner walls of ICA. Hyperglycaemia was found to increase wall shear stresses on the carotid artery and reduce the blood velocity by as much as 4 times in ECA. In conclusion, hemodynamics in ICA and ECA are not equally affected by stenosis, with hyperglycaemic blood potentially providing additional complications to the clinical case. 

Published
2020-09-28
How to Cite
Bouteloup, H., Marinho, J., chatpun, S., & Espino, D. (2020). Computational analysis to predict the effect of pre-bifurcation stenosis on the hemodynamics of the internal and external carotid arteries. Journal of Mechanical Engineering and Sciences, 14(3), 7029 - 7039. https://doi.org/10.15282/jmes.14.3.2020.05.0550