Substantiation of the parameters of the process of plasma-mechanical milling of titanium alloys and alloyed steels

Authors

  • Anton Ryazantsev Faculty of Mechanical and Machine Engineering, Kryvyi Rih National University, 50027, Kryvy Rih, Ukraine. Phone: +380973468909
  • V.P. Nechaev Faculty of Mechanical and Machine Engineering, Kryvyi Rih National University, 50027, Kryvy Rih, Ukraine. Phone: +380973468909
  • O.V. Bondar Faculty of Mechanical and Machine Engineering, Kryvyi Rih National University, 50027, Kryvy Rih, Ukraine. Phone: +380973468909

DOI:

https://doi.org/10.15282/jmes.14.4.2020.18.0592

Keywords:

Plasma-mechanical milling, titanium alloy, structural-phase changes, plasma arc

Abstract

The article is devoted to the development and scientific substantiation of the method of processing high-strength materials using surface plasma heating. A method for determining the parameters of the plasma-mechanical milling process has been formed, which includes: thermal calculations of the plasma arc power; thermal field characteristics in the part material; determination of residual stresses and hardness of the surface layer of the part. The choice of technological parameters of a plasma heating source is grounded. Criteria are formulated to which the source of plasma heating must correspond. Calculations are performed to determine the dependence of the performance of the milling process on titanium alloy Ti-6Al-4V with the achievement of a certain microstructure of the part being cut off under the influence of plasma heating. A new scheme of plasma-mechanical milling is proposed, which provides for arc scanning in a magnetic field in the direction of the minute vector filing cutters and additional cyclical movement across the plasma torch feed vector with an amplitude of approximately equal to width milling. The proposed method of plasma heating a cut off layer allows lowering costs of processing time, and solve the problem of shortening ships' construction time.

References

M. T. Korotkih, “Vysokoproizvoditelnoe plazmenno-mehanicheskoe frezerovanie trudnoobrabatyivaemyih materialov [High-performance plasma-mechanical milling of hard materials],” Dissertation. Leningrad Polytechnical Institute. 1981.

N. A. Kasim, M. Z. Nuawi, J. A. Ghani, M. Rizal, M. A. F. Ahmad and C. H. Che Haron, “Cutting tool wear progression index via signal element variance,” Journal of Mechanical Engineering and Sciences, vol. 13, no. 1, pp. 4596–4612, 2019, doi:10.15282/jmes.13.1.2019.17.0387.

L. N. López de Lacalle, J. A. Sánchez, А. Lamikiz, А. Celaya, “Plasma assisted milling of heat-resistant superalloys,” Journal of Manufacturing Science and Engineering, vol. 126, no. 2, рр. 274- 285, 2004, doi: 10.1115/1.1644548.

C. E. Leshock, J. N. Kim, Y. C. Shin, “Plasma enhanced machining of Inconel 718: modeling of workpiece temperature with plasma heating and experimental results,” International Journal of Machine Tools and Manufacture, vol. 41, рр. 877–897, 2001.

M. T. Korotkih, L. A. Ushomirskaya, “Osobennosti primeneniya plazmennogo nagreva pri obrabotke trudnoobrabatyivaemyih materialov rezaniem [Characteristics of plasma heating in handling cutting hard materials],” Metalloobrabotka, vol. 2, no. 68, рр. 23–27, 2012.

N. A. Reznikov, M. A. Shaterin, V. S. Kunin, L. A. Reznikov, “Obrabotka metallov rezaniem s plazmennyim nagrevom [Metal cutting with plasma heating]. Mashinostroenie, Moscow, 1986.

S. Sun, M. Brandt, M. S.Dargusch, “Thermally enhanced machining of hard-to-machine materials,” International Journal of Machine Tools and Manufacture, vol. 50, no. 8, рр. 663–680, 2010, doi: 10.1016/j.ijmachtools.2010.04.008.

G. Madhavulu, B. Ahmed, “Hot machining process for improved metal removal rates in turning operations,” Journal of Materials Processing Technology, vol. 44, рр. 199–206, 1994.

L. N. López de Lacalle, J. A. Sanchez, A. Lamikiz, A. Celaya, “Plasma assisted milling heat-resistant superalloys,” Journal of Manufacturing Science and Engineering, vol. 126, no. 2, рр. 274–285, 2004.

T. Kitagawa, K. Maekawa, “Plasma hot machining for new engineering materials,” Wear, vol.139, no. 2, рр. 251–267, 1990, doi: 10.1016/0043-1648(90)90049-G.

М. Dogra,. V. S. Sharma, “Techniques to improve the effectiveness in machining of hard to machine materials: a review,” International Journal of Research in Mechanical Engineering and Technology, vol. 3, no. 2, рр. 122-126, 2013.

S. H. Chen, K. T. Tsai, “Predictive Analysis for the Thermal Diffusion of the Plasma-Assisted Machining of Superalloy Inconel-718 Based on Exponential Smoothing,” Advances in Materials Science and Engineering, 2018, Article ID 9532394, 9 pages, doi: 10.1155/2018/9532394.

J. W. Novak, Y. C. Shin, F. P. Incropera, “Assessment of Plasma Enhanced Machining for Improved Machinability of Inconel 718,” ASME J. Manuf. Sci. Eng., vol. 119, рр. 125–129, 1997, doi: 10.1115/1.2836550.

A. K. M. N. Amin, M. Abdelgadir, K. Kamaruddin, “Effect of Workpiece Preheating on Machinability of Titanium Alloy,” In Proceedings of the International Conference ICAMT, рр. 145–152, 2004.

M. A. Shaterin, M. T. Korotkih, V. P. Nechaev, “Plazmenno-mehanicheskoe tortsovoe frezerovanie [Plasma-mechanical face-milling],” Mashinostroitel, vol. 9, рр. 21–22, 1986.

V. V. Tsotshadze, “Temperatura rezaniya pri tochenii predvaritelno nagretogo metalla [Cutting temperature when turning preheated metal],” Vestnik mashinostroeniya, vol. 11, рр. 51–53, 1983.

A. Ryazantsev, V. Nechaev, O. Bondar, “Surface Hardening Technology with a Concentrated Energy Source,” International Journal of Integrated Engineering, vol. 11, no. 8, рр. 135–142, 2019, doi: 10.30880/ijie.2019.11.08.014.

N. N. Ryikalin, “Raschet teplovyih protsessov pri svarke [Calculation of thermal processes during welding],” Mashgiz, Moscow, 1963.

B. N. Arzamasov, “Materialovedenie [Materials Science],” Mashinostroenie, Moscow. 1986.

G. N. Oneyl, “Tverdost metallov i ee izmerenie [Metal hardness and its measurement],” Metallurgizdat, Leningrad, 1940.

А. А. Ryazantsev, “Analysis of means of reliability and service life growth for open gear drive of ore-pulverizing mills,” Metallurgical and Mining Industry, vol.4, рр. 16–22, 2014.

Md. Ashikur Rahman Khan1, M. M. Rahman, K. Kadirgama, M. A. Maleque and M. Ishak, “Prediction of Surface Roughness of Ti-6Al-4V in Electrical Discharge Machining: A Regression Model,” Journal of Mechanical Engineering and Sciences, vol. 1, рр. 16–24, 2011, doi: 10.15282/jmes.1.2011.2.0002.

Downloads

Published

2020-12-22

How to Cite

[1]
A. Ryazantsev, V. Nechaev, and O. Bondar, “Substantiation of the parameters of the process of plasma-mechanical milling of titanium alloys and alloyed steels”, J. Mech. Eng. Sci., vol. 14, no. 4, pp. 7520–7527, Dec. 2020.