Prediction of fatigue life of aluminum 2024-T3 at low temperature by finite element analysis

Authors

  • S. Mazlan Department of Aerospace Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Tel: +603 - 9769 4413; Fax: +603 - 9769 4488
  • N. Yidris Department of Aerospace Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Tel: +603 - 9769 4413; Fax: +603 - 9769 4488
  • R. Zahari System Engineering Department, Military Technological College, P.O Box 262 PC 111, Muscat, Sultanate of Oman
  • E. Gires Department of Aerospace Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Tel: +603 - 9769 4413; Fax: +603 - 9769 4488
  • D.L.A. Majid Department of Aerospace Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Tel: +603 - 9769 4413; Fax: +603 - 9769 4488
  • K.A. Ahmad Department of Aerospace Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Tel: +603 - 9769 4413; Fax: +603 - 9769 4488

DOI:

https://doi.org/10.15282/jmes.14.3.2020.18.0563

Keywords:

Aluminum 2024-T3, Fatigue test, Low temperature, ANSYS Workbench

Abstract

The change in material properties at low temperature has always been one of the concerned design factors in aircraft industries. The wings and fuselage are repeatedly exposed to sub zero temperature during cruising at high altitude. In this study, fatigue tests were conducted on standard flat specimens of aluminum 2024-T3 at room temperature and at -30 °C. The monotonic and cyclic loading tests were conducted using MTS 810 servo hydraulic machine equipped with a cooling chamber. The monotonic tests were conducted at a crosshead speed rate of 1 mm/min and the cyclic tests at a frequency of 10 Hz with a load ratio of 0.1. The experimental data obtained, such as the yield strength, ultimate strength and S-N curve were used as the input parameters in ANSYS Workbench 16.1. This close agreement demonstrates that the isotropic model in ANSYS workbench is essential in predicting fatigue life. The increase in stress parameter causes fatigue life to decrease. Besides, the decrease in temperature causes the total fatigue life to increase.

References

A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W. S. Miller, “Recent development in aluminium alloys for aerospace applications,” Mater. Sci. Eng. A, vol. 280, no. 1, pp. 102–107, 2000, doi: https://doi.org/10.1016/S0921-5093(99)00674-7.

T. Dursun and C. Soutis, “Recent developments in advanced aircraft aluminium alloys,” Mater. Des., vol. 56, pp. 862–871, 2014, doi: https://doi.org/10.1016/j.matdes.2013.12.002.

S. Saleem Khan, D. Hellmann, O. Kintzel, and J. Mosler, “An experimental and numerical lifetime assessment of Al 2024 sheet,” Procedia Eng., vol. 2, no. 1, pp. 1141–1144, 2010, doi: https://doi.org/10.1016/j.proeng.2010.03.123.

X. Jin, “Key problems faced in high-speed train operation,” J. Zhejiang Univ. Sci. A, vol. 15, pp. 936–945, 2014.

K. Hockauf, M. F.-X. Wagner, T. Halle, T. Niendorf, M. Hockauf, and T. Lampke, “Influence of precipitates on low-cycle fatigue and crack growth behavior in an ultrafine-grained aluminum alloy,” Acta Mater., vol. 80, pp. 250–263, 2014, doi: https://doi.org/10.1016/j.actamat.2014.07.061.

M. Delbove, J. B. Vogt, J. Bouquerel, T. Soreau, N. François, and F. Primaux, “Microstructure Evolution of a Precipitation Hardened Cu-Ni-Si Alloy during Low Cycle Fatigue,” in Materials Structure & Micromechanics of Fracture VIII, 2017, vol. 258, pp. 546–549, doi: 10.4028/www.scientific.net/SSP.258.546.

W. Ziaja, M. Motyka, H. Dybiec, and J. Sieniawski, “High cycle bending fatigue life of submicrocrystalline aluminum alloy,” Mech. Mater., vol. 67, pp. 33–37, 2013, doi: https://doi.org/10.1016/j.mechmat.2013.07.013.

Y. Takahashi, T. Shikama, S. Yoshihara, T. Aiura, and H. Noguchi, “Study on dominant mechanism of high-cycle fatigue life in 6061-T6 aluminum alloy through microanalyses of microstructurally small cracks,” Acta Mater., vol. 60, no. 6, pp. 2554–2567, 2012, doi: https://doi.org/10.1016/j.actamat.2012.01.023.

D. E. Pettit and J. M. Van Orden, “Evaluation of Temperature Effects on Crack Growth in Aluminum Sheet Material,” in Fracture Mechanics: Proceedings of the Eleventh National Symposium on Fracture Mechanics: Part I, C. W. Smith, Ed. West Conshohocken, PA: ASTM International, 1979, pp. 106–124.

J. M. Cox, D. E. Pettit, and S. L. Langenbeck, “Effect of Temperature on the Fatigue and Fracture Properties of 7475-T761 Aluminum,” in Fatigue at Low Temperatures, R. I. Stephens, Ed. West Conshohocken, PA: ASTM International, 1985, pp. 241–256.

P. R. Abelkis, M. B. Harmon, E. L. Hayman, T. L. Mackay, and J. Orlando, “Low Temperature and Loading Frequency Effects on Crack Growth and Fracture Toughness of 2024 and 7475 Aluminum,” in Fatigue at Low Temperatures, R. I. Stephens, Ed. West Conshohocken, PA: ASTM International, 1985, pp. 257–273.

C. L. Walters, “The Effect of Low Temperatures on the Fatigue of High-strength Structural Grade Steels,” Procedia Mater. Sci., vol. 3, pp. 209–214, 2014, doi: 10.1016/j.mspro.2014.06.037.

K. S. Niaki and S. E. Vahdat, “Fatigue Scatter of 1.2542 Tool Steel after Deep Cryogenic Treatment,” Mater. Today Proc., vol. 2, no. 4, pp. 1210–1215, 2015, doi: https://doi.org/10.1016/j.matpr.2015.07.033.

H. Nazarian, M. Krol, M. Pawlyta, and S. E. Vahdat, “Effect of sub-zero treatment on fatigue strength of aluminum 2024,” Mater. Sci. Eng. A, vol. 710, no. October 2017, pp. 38–46, 2018, doi: 10.1016/j.msea.2017.10.072.

M. P. Weiss and E. Lavi, “Fatigue of metals - What the designer needs?,” Int. J. Fatigue, vol. 84, pp. 80–90, 2016, doi: 10.1016/j.ijfatigue.2015.11.013.

P. Gurubaran, M. Afendi, M. A. Nur Fareisha, M. S. Abdul Majid, I. Haftirman, and M. T. A. Rahman, “Fatigue life investigation of UIC 54 rail profile for high speed rail,” J. Phys. Conf. Ser., vol. 908, no. 1, 2017, doi: 10.1088/1742-6596/908/1/012026.

A. F. Ergenc, A. T. Ergenc, S. Kale, I. G. Sahin, V. Pestelli, and K. Dagdelen, “Reduced Weight Automotive Brake Pedal Test & Analysis,” Int. J. Automot. Sci. Technol., vol. 1, no. 2, pp. 8–13, 2017.

B. Riad, H. Okba, and S. Samir, “Fatigue life assessment of welded joints in a crane boom using different structural stress approaches,” J. Mech. Eng. Sci., vol. 13, pp. 5048–5073, 2019.

P. K. Singh, M. Gautam, and S. B. Lal, “Stress Analysis Spur Gear Design By Using Ansys Workbench,” Int. J. Mech. Eng. Robot. Res., vol. 5, no. 4, pp. 1560–1562, 2014.

Y. L. Fan, N. Perera, and K. Tan, “An integrated experimental and numerical method to assess the fatigue performance of recycled rail,” J. Mech. Eng. Sci., vol. 13, no. 4 SE-Article, Dec. 2019, doi: 10.15282/jmes.13.4.2019.18.0474.

E. M. Adigio and E. O. Nangi, “Computer Aided Design and Simulation of Radial Fatigue Test of Automobile Rim Using ANSYS,” IOSR J. Mech. Civ. Eng., vol. 11, no. 1, pp. 68–73, 2014, doi: 10.9790/1684-11146873.

S. R. Vempati, K. B. Raju, and K. V. Subbaiah, “Simulation of Ti-6Al-4V cruciform welded joints subjected to fatigue load using XFEM,” J. Mech. Eng. Sci., vol. 13, no. 3 SE-Article, Sep. 2019, doi: 10.15282/jmes.13.3.2019.11.0437.

M. F. Borges, F. V. Antunes, P. A. Prates, and R. Branco, “A numerical study of the effect of isotropic hardening parameters on mode I fatigue crack growth,” Metals (Basel)., vol. 10, no. 2, 2020, doi: 10.3390/met10020177.

A. Carpinteri, “Crack growth resistance in non-perfect plasticity: Isotropic versus kinematic hardening,” Theor. Appl. Fract. Mech., vol. 4, no. 2, pp. 117–122, 1985, doi: https://doi.org/10.1016/0167-8442(85)90015-1.

R. Li et al., “Advanced plasticity modeling for ultra-low-cycle-fatigue simulation of steel pipe,” Metals (Basel)., vol. 7, no. 4, 2017, doi: 10.3390/met7040140.

Y.-L. Lee, M. E. Barkey, and H.-T. Kang, Metal fatigue analysis handbook : practical problem-solving techniques for computer-aided engineering. Amsterdam; London; Waltham, Mass.; Oxford: Elsevier ; Butterworth-Heinemann, 2012.

ASTM E8/E8M, “ASTM E8/E8M standard test methods for tension testing of metallic materials 1,” Annu. B. ASTM Stand. 4, no. C, pp. 1–27, 2010, doi: 10.1520/E0008.

S. Khan, O. Kintzel, and J. Mosler, “Experimental and numerical lifetime assessment of Al 2024 sheet,” Int. J. Fatigue, vol. 37, pp. 112–122, 2012, doi: 10.1016/j.ijfatigue.2011.09.010.

ASTM E466-15, “AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM E466-15. Practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials,” ASTM B. Stand., vol. i, pp. 1–6, 2015, doi: 10.1520/E0466-15.2.

R. I. Stephens, A. Fatemi, R. R. Stephens, and H. O. Fuchs, Metal Fatigue in Engineering. 2000.

J. Man, M. Valtr, A. Weidner, M. Petrenec, K. Obrtlk, and J. Polk, “AFM study of surface relief evolution in 316L steel fatigued at low and high temperatures,” Procedia Eng., vol. 2, no. 1, pp. 1625–1633, 2010, doi: 10.1016/j.proeng.2010.03.175.

S. Khan, A. Vyshnevskyy, and J. Mosler, “Low cycle lifetime assessment of Al2024 alloy,” Int. J. Fatigue, vol. 32, no. 8, pp. 1270–1277, 2010, doi: 10.1016/j.ijfatigue.2010.01.014.

H. O. Fuchs, R. I. Stephens, and H. Saunders, Metal Fatigue in Engineering (1980), vol. 103, no. 4. 1981.

F. G. L. Pereira, J. M. Lourenço, R. M. do Nascimento, and N. A. Castro, “Fracture Behavior and Fatigue Performance of Inconel 625,” Mater. Res., vol. 21, no. 4, 2018, doi: 10.1590/1980-5373-mr-2017-1089.

K. Tanaka and T. Mura, “A theory of fatigue crack initiation at inclusions,” Metall. Trans. A, vol. 13, no. 1, pp. 117–123, 1982, doi: 10.1007/BF02642422.

C. Q. Bowles and J. Schijve, “The role of inclusions in fatigue crack initiation in an aluminum alloy,” Int. J. Fract., vol. 9, no. 2, pp. 171–179, 1973, doi: 10.1007/BF00041859.

Downloads

Published

2020-09-30

How to Cite

[1]
S. Mazlan, N. Yidris, R. Zahari, E. Gires, D. Majid, and K. Ahmad, “Prediction of fatigue life of aluminum 2024-T3 at low temperature by finite element analysis”, J. Mech. Eng. Sci., vol. 14, no. 3, pp. 7170–7180, Sep. 2020.