Stress-Strain Response Modelling of Glass Fibre Reinforced Epoxy Composite Pipes under Multiaxial Loadings

Authors

  • M.S. Abdul Majid School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, 02600, Pauh, Perlis, Malaysia
  • R. Daud School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, 02600, Pauh, Perlis, Malaysia
  • M. Afendi School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, 02600, Pauh, Perlis, Malaysia
  • N.A.M Amin School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, 02600, Pauh, Perlis, Malaysia
  • E.M. Cheng School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, 02600, Pauh, Perlis, Malaysia
  • A.G. Gibson Newcastle University, Stephenson Building, Newcastle upon Tyne, NE1 7RU, UK
  • M. Hekman Technology & Engineering Developments Future Pipe Industries (FPI), UAE

DOI:

https://doi.org/10.15282/jmes.6.2014.18.0088

Keywords:

Stress strain response; multiaxial loadings; composite pipes; cyclic and static loading; crack density

Abstract

This paper presents the modelling of the stress strain response of glass fiber reinforced epoxy (GRE) composite pipes subjected to multiaxial loadings at room temperature (RT). This particular modeling work was developed to predict the non-linear stress strain response caused by the fatigue cyclic and static loading in the multiaxial ultimate elastic wall stress (UEWS) tests by considering the effects of matrix cracking within the laminates. The UEWS test, whilst not yet standardized, appears to offer an attractive alternative to existing procedures of qualifying GRE pipes. The ply properties initially expressed as a function of crack density were computed as a function of increasing stress and strain using shear lag approximation. The results show that the model developed from the classical laminate theory which takes into account whether the effects of transverse matrix micro-cracks on stiffness and strains is capable of predicting the resulted elastic properties. The predictions are found to be in good agreement with the data from multiaxial UEWS tests on ±55° filament wound glass-reinforced epoxy pipes.

References

Abdul Majid, M. S., Assaleh, T.A., Gibson, A.G., Hale, J.M., Fahrer, A., Rookus, C.A.P., Hekman, M. (2011). Ultimate elastic wall stress (uews) test of glass fibre reinforced epoxy (gre) pipe. Composites Part A: Applied Science and Manufacturing, 42(10), 1500-1508.

Bachtiar, D., Sapuan, S. M., & Hamdan, M. M. (2010). Flexural properties of alkaline treated sugar palm fibre reinforced epoxy composites. International Journal of Automotive and Mechanical Engineering, 1, 79-90.

Carvalho, A., & Marques, C. (2007). A new formula to predict the structural life of composite pipes. JEC Composites Magazine, 44(33), 71-74.

Frost, S. R., & Cervenka, A. (1994). Glass fibre-reinforced epoxy matrix filament-wound pipes for use in the oil industry. Composites Manufacturing, 5(2), 73-81.

Gibson, A. G., Abdul Majid, M. S., Assaleh, T. A., Hale, J. M., Fahrer, A., Rookus, C. A. P., & Hekman, M. (2011). Qualification and lifetime modelling of fibreglass pipe. Plastics, Rubber and Composites, 40(2), 80-85.

Gibson, A. G., Saied, R. O., Evans, J. T., & Hale, J. M. (2003a). Failure envelopes for glass fiber pipes in water up to 160c. Proceeding 'The 4th MERL International Conference, Oilfield Engineering with Polymer, 3-4 November, pp. 163-177, Institute of Electrical Engineers, London UK.

Gibson, A. G., Saied, R. O., Evans, J. T., & Hale, J. M. (2003b). Failure envelopes for glass fiber pipes in water up to 160c. Paper presented at the Proceeding 'The 4th MERL International Conference, Oilfield Engineering with Polymer, London UK.

Hale, J. M., Shaw, B. A., Speake, S. D., & Gibson, A. G. (2000). High temperature failure envelopes for thermosetting composite pipes in water. Plastics, Rubber and Composites Processing and Applications, 29(10), 539-548.

Hanh, H. T., & Tsai, S. W. (1974). On the behaviour of composite laminates after initial failures. Journal of Composite Materials, Vol. 8, 280-305.

Hashin, Z. (1985). Analysis of cracked laminates: A variational approach. Mechanics of Materials, 4(2), 121-136.

Highsmith, A. L., & Reifsnider, K. L. (1982). Stiffness reduction mechanisms in composite laminates. . Damage in composite materials,, ASTM STP 775, 103-117.

Hull, D., Legg, M. J., & Spencer, B. (1978). Failure of glass/polyester filament wound pipe. Composites, 9(1), 17-24.

Jeffrey, K. J. T., Tarlochan, F., & Rahman, M. M. (2011). Residual strength of chop strand mats glass fiber/epoxy composite structures: Effect of temperature and water absorption. International Journal of Automotive and Mechanical Engineering, 4, 504-519.

Jones, M. L. C., & Hull, D. (1979). Microscopy of failure mechanisms in filament-wound pipe. Journal of Materials Science, 14(1), 165-174.

Kamal, M., Rahman, M. M., & Rahman, A. G. A. (2012). Fatigue life evaluation of suspension knuckle using multibody simulation technique. Journal of Mechanical Engineering and Sciences, 3, 291-300.

Kamal, M., Rahman, M. M., & Sani, M. S. M. (2013). Application of multibody simulation for fatigue life estimation. International Journal of Automotive and Mechanical Engineering, 7, 912-923.

Katerelos, D. G., McCartney, L. N., & Galiotis, C. (2006). Effect of off–axis matrix cracking on stiffness of symmetric angle-ply composite laminates. International journal of fracture, 139(3-4), 529-536.

Katerelos, D. T. G., Lundmark, P., Varna, J., & Galiotis, C. (2007). Analysis of matrix cracking in gfrp laminates using raman spectroscopy. Composites Science and Technology, 67(9), 1946-1954.

Khalifa, A. B., Zidi, M., & Abdelwahed, L. (2012). Mechanical characterization of glass/vinylester ±55° filament wound pipes by acoustic emission under axial monotonic loading. Comptes Rendus - Mecanique, 340(6), 453-460.

Laws, N., Dvorak, G. J., & Hejazi, M. (1983). Stiffness changes in unidirectional composites caused by cracks systems. Mechanics of Materials, Vol. 2, 123-137.

Li, S., Reid, S. R., & Soden, P. D. (1998). A continuum damage model for transverse matrix cracking in laminated fibre-reinforced composites. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 356(1746), 2379-2412.

Meijer, G., & Ellyin, F. (2008). A failure envelope for ±60° filament wound glass fibre reinforced epoxy tubulars. Composites Part A: Applied Science and Manufacturing, 39(3), 555-564.

Mertiny, P., & Ellyin, F. (2006). Performance of high-pressure fiber-reinforced polymer composite pipe structures. Paper presented at the American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP.

Nairn, J. A., & Hu, S. (1994). Matrix microcracking. In: Damage mechanics of composite materials. Talreja, r, editor. Amsterdam: Elsevier Science, Chapter 6, 187-243.

Norman, L., & Dvorak, G. J. (1988). Progressive transverse cracking in composite laminates. Journal of Composite Materials, 22, 900-916.

Praveen, G. N., & Reddy, J. N. (1998). Transverse matrix cracks in cross-ply laminates: Stress transfer, stiffness reduction and crack opening profiles. Acta mechanica, 130(3-4), 227-248.

Rahman, M. M., Ariffin, A. K., Rejab, M. R. M., Kadirgama, K., & Noor, M. M. (2009). Multiaxial fatigue behavior of cylinder head for a free piston linear engine. Journal of Applied Sciences, 9(15), 2725-2734.

Ravi Sankar, H., Srikant, R. R., Vamsi Krishna, P., Bhujanga Rao, V., & Bangaru Babu, P. (2013). Estimation of the dynamic properties of epoxy glass fabric composites with natural rubber particle inclusions. International Journal of Automotive and Mechanical Engineering, 7, 968-980.

Reifsnider, K. L., Henneke, E. G., Stinchcomb, W. W., & Duke, J. C. (1983). Damage mechanics and nde of composite laminates, in mechanics of composite materials - recent advances. Pergamon Press, New York(399-420).

Roberts, S. J., Evans, J. T., Gibson, A. G., & Frost, S. R. (2003). The effect of matrix microcracks on the stress-strain relationship in fiber composite tubes. Journal of Composite Materials, 37(17), 1509-1523.

Salleh, Z., Yusop, M. Y. M., & Rosdi, M. S. (2013). Mechanical properties of activated carbon (ac) coir fibers reinforced with epoxy resin. Journal of Mechanical Engineering and Sciences, 5, 631-638.

Schwencke, H. F., De Ruyter van Stevenick, A.W. . (1968). The ultimate elastic wall stress (uews) of wavistrong pipes (a criterion for the determination of the working pressure of a grp pipe). 68-11(Shell Publication).

Sun, C. T., & Tao, J. (1998). Prediction of failure envelopes and stress/strain behaviour of composite laminates. Composites Science and Technology, 58(7), 1125-1136.

Tao, J. X., & Sun, C. T. (1996). Effect of matrix cracking on stiffness of composite laminates. Mechanics of Composite Materials and Structures, 3(3), 225-239.

Tarakcioglu, N., Gemi, L., & Yapici, A. (2005). Fatigue failure behavior of glass/epoxy ±55 filament wound pipes under internal pressure. Composites Science and Technology, 65(3-4), 703-708.

Downloads

Published

2014-06-30

How to Cite

[1]
M.S. Abdul Majid, “Stress-Strain Response Modelling of Glass Fibre Reinforced Epoxy Composite Pipes under Multiaxial Loadings”, J. Mech. Eng. Sci., vol. 6, no. 1, pp. 916–928, Jun. 2014.

Issue

Section

Article