Effect of boundary factor and material property on single square honeycomb sandwich panel subjected to quasi-static compression loading

Authors

  • Quanjin Ma Structural Performance Materials Engineering Focus Group, Faculty of Mechanical & Automotive Engineering Technology, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia. Phone: +60172667860; Fax: +6094246222
  • Tengfei Kuai School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • M.R.M Rejab Structural Performance Materials Engineering Focus Group, Faculty of Mechanical & Automotive Engineering Technology, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia. Phone: +60172667860; Fax: +6094246222
  • Nallapaneni Manoj Kumar School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
  • M.S Idris Structural Performance Materials Engineering Focus Group, Faculty of Mechanical & Automotive Engineering Technology, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
  • M.H Abdullah Structural Performance Materials Engineering Focus Group, Faculty of Mechanical & Automotive Engineering Technology, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia. Phone: +60172667860; Fax: +6094246222

DOI:

https://doi.org/10.15282/jmes.14.4.2020.03.0577

Keywords:

Compressive strength, crushing response, boundary factor, material property, honeycomb sandwich panel

Abstract

This paper is aimed to investigate the crushing response of single square honeycomb panels under quasi-static compression loading. Two types of materials are used in this study, which refers to 100 % polylactic acid (PLA) and 70 % PLA filled 30 % carbon fibre (PLA/CF). Single honeycomb panels were fabricated through additive manufacturing technique, and assembled using slotting technique. The effect of boundary factor on the single square honeycomb panels have been studied, which refers to none, single-side, double-side boundary conditions. The effect of material properties on the crushing response has also involved. For the tensile test, it was concluded that the PLA/CF specimen offered the higher young modulus with 428.75 MPa than 360.76 MPa of PLA specimen. For the quasi-static compression test, the compressive modulus and strength of the single honeycomb sandwich panel showed 489.69 MPa and 18.32 MPa with boundary type 1, which provided the highest value compared to other two boundary condition types. Moreover, the square honeycomb sandwich panels with PLA/CF material and type 3 boundary condition offered the better crushing performance on energy absorption (EA) with 66.42 kJ and specific energy absorption (SEA) with 2282.47 kJ/kg. In addition, the crushing behaviour and failure mode were also involved and discussed in this study.

References

N. Z. M. Zaid, M. R. M. Rejab, and N. A. N. Mohamed, “Sandwich structure based on corrugated–core: A review,” in MATEC Web of Conferences: EDP Sciences, 2016.

M. Sun, D. Wowk, C. Mechefske, IY. Kim, “An analytical study of the plasticity of sandwich honeycomb panels subjected to low–velocity impact,” Composites Part B, vol. 168, no. 1, pp. 121–128, 2019, doi: 10.1016/j.compositesb.2018.12.071.

M. Sun, P. Kendall, D. Wowk, IY. Kim, C. Mechefske, “Damage assessment on the surface and honeycomb core of the aluminum sandwich panel subjected to low–velocity impact,” in ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference: American Society of Mechanical Engineers, 2018, pp. 1–7.

M. Quanjin, M. R. M. Rejab, I. Sahat, M. Amiruddin, D. Bachtiar, J. P. Siregar, and M. I. Ibrahim, “Design of portable 3–axis filament winding machine with inexpensive control system,” Journal of Mechanical Engineering and Sciences, vol. 12, no. 1, pp. 3479–3493, 2018, doi: 10.15282/jmes.12.1.2018.15.0309.

M. Quanjin, M. R. M. Rejab. M. S. Idris, S. A. Hassan, and N. M. Kumar, “Effect of winding angle on the quasi–static crushing behaviour of thin–walled carbon fibre–reinforced polymer tubes,” Polymers and Polymer Composites., 2019, doi: 10.1177/0967391119887571.

C. J. Shen, G. Lu, T. X. Yu, “Dynamic behavior of graded honeycombs–A finite element study,” Composite Structures., vol. 98, pp. 282–293, 2013, doi: 10.1016/j.compstruct.2012.11.002.

D. Asprone, F. Auricchio, C. Menna, S. Morganti, A. Prota, A. Reali, “Statistical finite element analysis of the buckling behavior of honeycomb structures,” Composite Structures., vol. 105, pp. 240–255, 2013, doi: 10.1016/j.compstruct.2013.05.014.

H. N. G. Wadley, N. A. Fleck, A. G. Evans, “Fabrication and structural performance of periodic cellular metal sandwich structures,” Composites Science and Technology, vol. 63, no. 16, pp. 2331–2343, 2003, doi: 10.1016/S0266-3538(03)00266-5.

B. L. Buitrago, C. Santiuste, S. Sánchez-Sáez, E. Barbero, C. Navarro, “Modelling of composite sandwich structures with honeycomb core subjected to high–velocity impact,” Composite Structures, vol. 92, no. 9, pp. 2090–2096, 2010, doi: 10.1016/j.compstruct.2009.10.013.

K. P. Dharmasena, H. N. G. Wadley, Z. Xue, J. W. Hutchinson, “Mechanical response of metallic honeycomb sandwich panel structures to high–intensity dynamic loading,” International Journal of Impact Engineering., vol. 35, no. 9, pp. 1063–1074, 2008, doi: 10.1016/j.ijimpeng.2007.06.008.

J. Xiong, L. Ma, S. Pan, L. Wu, J. Papadopoulos, A. Vaziri, “Shear and bending performance of carbon fiber composite sandwich panels with pyramidal truss cores,” Acta Materialia., vol. 60, no. 4, pp. 1455–1466, 2012, doi: 10.1016/j.actamat.2011.11.028.

A. Petras, M. P. F. Sutcliffe, “Failure mode maps for honeycomb sandwich panels,” Composite Structures, vol. 44, no. 4, pp. 237–252, 1999, doi: 10.1016/S0263-8223(98)00123-8.

V. N. Burlayenko, T. Sadowski, “Effective elastic properties of foam–filled honeycomb cores of sandwich panels,” Composite Structures, vol. 92, no. 12, pp. 2890–2900, 2010, doi: 10.1016/j.compstruct.2010.04.015.

M. He, W. Hu, “A study on composite honeycomb sandwich panel structure,” Materials & Design., vol. 29, no. 3, pp. 709–713, 2008, doi: 10.1016/j.matdes.2007.03.003.

M. R. M. Rejab. D. Bachtiar, J. P. Siregar, P. Paruka, S. Fadzullah, B. Zhang, “The mechanical behavior of foam–filled corrugated core sandwich panels in lateral compression,” in Proceedings of the American Society for Composites: Thirty-First Technical Conference, 2016.

M. K. Khan, T. Baig, S. Mirza, “Experimental investigation of in–plane and out–of–plane crushing of aluminum honeycomb,” Materials Science and Engineering A., vol. 539, no. 30, pp. 135–142, 2012, doi: 10.1016/j.msea.2012.01.070.

I. Ivañez, L. M. Fernandez–Cañadas, S. Sanchez–Saez, “Compressive deformation and energy–absorption capability of aluminium honeycomb core,” Composite Structures, vol. 174, no. 15, pp. 123–133, 2017, doi: 10.1016/j.compstruct.2017.04.056.

A. P. Meran, T. Toprak, A. Muğan, “Numerical and experimental study of crashworthiness parameters of honeycomb structures,” Thin-Walled Struct., vol. 78, pp. 87–94, 2014, doi: 10.1016/j.tws.2013.12.012.

W. A. D. W. Dalina, M. Mariatti, Z. A. M. Ishak, A. Mohamed, “Comparison of properties of mwcnt/carbon fibre/epoxy laminated composites prepared by solvent spraying method,” International Journal of Automotive and Mechanical Engineering, vol. 10, pp. 1901–1909, 2014, doi: 10.15282/ijame.10.2014.7.0158.

H. R. Sankar, R. R. Srikant, P. V. Krishna, V. B. Rao, P. B. Babu, “Estimation of the dynamic properties of epoxy glass fabric composites with natural rubber particle inclusions,” International Journal of Automotive and Mechanical Engineering, vol. 7, pp. 968–980, 2013, doi: 10.15282/ijame.7.2012.13.0078.

Z. S. Nazirah, M. S. Abdul Majid, R. Daud, “Effects of elevated temperatures on glass reinforced epoxy pipes under multi–axial loadings,” Journal of Mechanical Engineering and Sciences, vol. 10, no. 1, pp. 1846–1856, 2016, doi: 10.15282/jmes.10.1.2016.9.0177.

N. Fatchurrohman, S. Sulaiman, S. M. Sapuan, M. K. A. Ariffin, B. T. H. T. Baharuddin, “Analysis of a metal matrix composites automotive component,” International Journal of Automotive and Mechanical Engineering., vol. 11, pp. 2531–2540, 2015, doi: 10.15282/ijame.11.2015.32.0213.

H. Kobayashi, M. Daimaruya, T. Kobayashi, “Dynamic and static compression tests for paper honeycomb cores and absorbed energy,” JSME Journal of Solid Mechanics and Materials Engineering, vol. 41, no. 3, pp. 338–344, 1998, doi: 10.1299/jsmea.41.338.

Y. Yasui, “Dynamic axial crushing of multi–layer honeycomb panels and impact tensile behavior of the component members,” International Journal of Impact Engineering., vol. 24, no. 6–7, pp. 659–671, 2000, doi: 10.1016/S0734-743X(99)00174-8.

R. A. Alia, O. Al-Ali, S. Kumar, W. J. Cantwell, “The energy–absorbing characteristics of carbon fiber–reinforced epoxy honeycomb structures,” Journal of Composite Materials, vol. 53, no. 9, pp. 1145–1157, 2019, doi: 10.1177/0021998318796161.

R. A. Alia, S. Rao, R. Umer, J. Zhou, C. Zheng, Z. Guan, and W. J. Cantwell, “The crushing characteristics of reinforced Nomex honeycomb,” Journal of Reinforced Plastics and Composites., vol. 37, no. 20, pp. 1267–1276, 2018, doi: 10.1177/0731684418793211.

M. A. Hazizan, W. J. Cantwell, “The low–velocity impact response of an aluminium honeycomb sandwich structure,” Composites Part B: Engineering, vol. 34, no. 8, pp. 679–687, 2003, doi: 10.1016/S1359-8368(03)00089-1.

S. A. H. Roslan, M. Z. Hassan, Z. A. Rasid, S. A. Zaki, Y. Daud, S. Aziz, and Z. Ismail, “Mechanical properties of bamboo reinforced epoxy sandwich structure composites,” International Journal of Automotive and Mechanical Engineering, vol. 12, pp. 2882–2892, 2015, doi: 10.15282/ijame.12.2015.7.0242.

Z. Ansari, M. R. M. Rejab, D. Bachtiar, J. P. Siregar, “Crushing response of green square honeycomb structure from sugar palm & PLA,” in Materials Science Forum: Trans. Tech. Publ., 2017, pp. 122–126.

Z. Ansari, C. W. Tan, M. R. M. Rejab, D. Bachtiar, J. P. Siregar, M. Y. M. Zuhri, and N. Marzuki, “Crushing behaviour of composite square honeycomb structure: A finite element analysis,” Journal of Mechanical Engineering and Sciences, vol. 2, pp. 2637–2649, 2017, doi: 10.15282/jmes.11.2.2017.7.0241.

M. Y. M. Zuhri, Z. W. Guan, W. J. Cantwell, “The mechanical properties of natural fibre based honeycomb core materials,” Composites Part B: Engineering, vol. 58, pp. 1–9, 2014, doi: 10.1016/j.compositesb.2013.10.016.

A. F. Jusoh, M. R. M. Rejab, J. P. Siregar, D. Bachtiar, “Natural fiber reinforced composites: A review on potential for corrugated core of sandwich structures,” in MATEC Web of Conferences: EDP Sciences, 2016.

M. Quanjin, I. M. Sahat, M. R. M. Rejab, M. R, S. A. Hassan, B. Zhang, M. N. M. Merzuki, “The energy–absorbing characteristics of filament wound hybrid carbon fiber–reinforced plastic/polylactic acid tubes with different infill pattern structures,” Journal of Reinforced Plastics and Composites, vol. 38, no. 23–24, pp. 1067–1088, 2019, doi: 10.1177/0731684419868018.

M. Quanjin, M. S. A. Salim, M. R. M. Rejab, O. E. Bernhardi, A. Y. Nasution, “Quasi–static crushing response of square hybrid carbon/aramid tube for automotive crash box application,” Materials Today: Proceedings., 2019, doi: 10.1016/j.matpr.2019.10.161.

M. Quanjin, M. R. M. Rejab, M. S. Idris, N. M. Kumar, M. Abdullah, G. R. Reddy, “Recent 3D and 4D intelligent printing technologies: A comparative review and future perspective,” Procedia Computer Science, vol. 167, pp. 1210–1219, 2020, doi: 10.1016/j.procs.2020.03.434.

M. Quanjin, M. R. M. Rejab, Q. Halim, M. N. M. Merzuki, M. Darus, “Experimental investigation of the tensile test using digital image correlation (DIC) method,” Materials Today: Proceedings., 2020, doi: 10.1016/j.matpr.2019.12.072.

Standard. A. D1621, “Standard test method for compressive properties of rigid cellular plastics,” West Conshohocken, PA: ASTM International, 2004.

R. T. L. Ferreira, I. C. Amatte, T. A. Dutra, D. Bürger, “Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers,” Composites Part B: Engineering., vol. 124, no. 1, pp. 88–100, 2017, doi: 10.1016/j.compositesb.2017.05.013.

Downloads

Published

2020-12-17

How to Cite

[1]
Q. Ma, T. Kuai, M. Rejab, N. Manoj Kumar, M. Idris, and M. Abdullah, “Effect of boundary factor and material property on single square honeycomb sandwich panel subjected to quasi-static compression loading”, J. Mech. Eng. Sci., vol. 14, no. 4, pp. 7348–7360, Dec. 2020.

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.