Experimental comparison of sinusoidal motion and non-sinusoidal motion of rise-dwell-fall-dwell in a Stirling engine

Authors

  • H.M. Wong Department of Mechanical and Materials Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras 43300, Kajang, Selangor, Malaysia. Phone: +60390860288; Fax: +60390198868
  • S.Y. Goh Department of Mechanical and Materials Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras 43300, Kajang, Selangor, Malaysia. Phone: +60390860288; Fax: +60390198868

DOI:

https://doi.org/10.15282/jmes.14.3.2020.01.0546

Keywords:

Stirling Engine, Rise-Dwell-Fall-Dwell Motion, Thermal Efficiency, Non-sinusoidal motion

Abstract

The Stirling engine is deemed to play a role in the near future of power generation. However, there is a large performance difference between the real and ideal Stirling engine. The use of sinusoidal motion for both displacer and piston in current applications is one of the reasons for this difference as it limits heat transfer. This paper investigated the use of non-sinusoidal rise-dwell-fall-dwell (RDFD) motion on both displacer and piston to improve the performance of a real Stirling engine and compared it to the conventional sinusoidal motion crankshaft driven Stirling engine. A gamma configuration Stirling engine test rig with a data acquisition system was constructed for this investigation. Among the four flywheels with each specifically designed cam profile tested, one was with sinusoidal motion while the remaining three were non-sinusoidal for comparison. The use of non-sinusoidal RDFD cam with 135° displacer dwell improved more than 36% thermal efficiency over sinusoidal motion crankshaft Stirling engine.

References

D. G. Thombare and S. K. Verma, “Technological development in the Stirling cycle engines,” Renewable and Sustainable Energy Reviews, vol. 12, no. 1. pp. 1–38, Jan. 2008, doi: 10.1016/j.rser.2006.07.001.

Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach, 5th ed. Boston: McGraw-Hill, 2004.

L. Červenka, “Idealization of The Real Stirling Cycle,” J. Middle Eur. Constr. Des. Cars, vol. 14, no. 3, 2017, doi: 10.1515/mecdc-2016-0011.

C. C. Kwasi-Effah, A. I. Obanor, and F. A. Aisien, “Stirling Engine Technology : A Technical Approach to Balance the Use of Renewable and Non-Renewable Energy Sources,” Am. J. Renew. Sustain. Energy, vol. 1, no. 3, 2015.

M. H. Ahmadi, M. A. Ahmadi, and F. Pourfayaz, “Thermal models for analysis of performance of Stirling engine: A review,” Renewable and Sustainable Energy Reviews, vol. 68. 2017, doi: 10.1016/j.rser.2016.09.033.

G. Xiao et al., “Design optimization with computational fluid dynamic analysis of β-type Stirling engine,” Appl. Therm. Eng., vol. 113, 2017, doi: 10.1016/j.applthermaleng.2016.10.063.

Y. Timoumi, I. Tlili, and S. Ben Nasrallah, “Performance optimization of Stirling engines,” Renew. Energy, vol. 33, no. 9, 2008, doi: 10.1016/j.renene.2007.12.012.

Y. Timoumi, I. Tlili, and S. Ben Nasrallah, “Design and performance optimization of GPU-3 Stirling engines,” Energy, vol. 33, no. 7. 2008, doi: 10.1016/j.energy.2008.02.005.

R. Gheith, H. Hachem, F. Aloui, and S. Ben Nasrallah, “Experimental and theoretical investigation of Stirling engine heater: Parametrical optimization,” Energy Convers. Manag., vol. 105, 2015, doi: 10.1016/j.enconman.2015.07.063.

M. Ni et al., “Improved Simple Analytical Model and experimental study of a 100 W β-type Stirling engine,” Appl. Energy, vol. 169, 2016, doi: 10.1016/j.apenergy.2016.02.069.

D. J. Shendage, S. B. Kedare, and S. L. Bapat, “Cyclic analysis and optimization of design parameters for Beta-configuration Stirling engine using rhombic drive,” Appl. Therm. Eng., vol. 124, 2017, doi: 10.1016/j.applthermaleng.2017.06.075.

M. F. Zainudin, R. A. Bakar, G. L. Ming, T. Ali, and B. A. Sup, “Thermodynamic cycle evaluation of rhombic drive beta-configuration Stirling engine,” in Energy Procedia, 2015, vol. 68, doi: 10.1016/j.egypro.2015.03.273.

Z. M. Farid, A. B. Rosli, and K. Kumaran, “Effects of phase angle setting, displacement, and eccentricity ratio based on determination of rhombic-drive primary geometrical parameters in beta-configuration Stirling engine,” in IOP Conference Series: Materials Science and Engineering, 2019, vol. 469, no. 1, doi: 10.1088/1757-899X/469/1/012047.

H. Chen, C. C. Lin, and J. P. Longtin, “Performance analysis of a free-piston Vuilleumier heat pump with dwell-based motion,” Appl. Therm. Eng., vol. 140, 2018, doi: 10.1016/j.applthermaleng.2018.05.028.

B. Cullen and J. McGovern, “Development of a theoretical decoupled Stirling cycle engine,” Simul. Model. Pract. Theory, vol. 19, no. 4, 2011, doi: 10.1016/j.simpat.2010.06.011.

Y. Kato, “Indicated diagrams of low temperature differential Stirling engines with channel-shaped heat exchangers,” Renew. Energy, vol. 103, 2017, doi: 10.1016/j.renene.2016.11.026.

A. R. Tavakolpour-Saleh, S. H. Zare, and H. Bahreman, “A novel active free piston Stirling engine: Modeling, development, and experiment,” Appl. Energy, vol. 199, 2017, doi: 10.1016/j.apenergy.2017.05.059.

M. Tarawneh, F. Al-Ghantian, M. A. Nawafleh, and N. Al-Kloub, “Numerical Simulation and Performance Evaluation of Stirling Engine Cycle,” Jordan J. Mech. Ind. Eng., vol. 4, pp. 615–628, 2010.

M. Craun and B. Bamieh, “Optimal periodic control of an ideal stirling engine model,” J. Dyn. Syst. Meas. Control. Trans. ASME, vol. 137, no. 7, 2015, doi: 10.1115/1.4029682.

M. T. García, E. C. Trujillo, J. A. V. Godiño, and D. S. Martínez, “Thermodynamic model for performance analysis of a Stirling engine prototype,” Energies, vol. 11, no. 10, 2018, doi: 10.3390/en11102655.

R. Li, L. Grosu, and D. Queiros-Condé, “Losses effect on the performance of a Gamma type Stirling engine,” Energy Convers. Manag., vol. 114, 2016, doi: 10.1016/j.enconman.2016.02.007.

D. Erol, H. Yaman, and B. Doğan, “A review development of rhombic drive mechanism used in the Stirling engines,” Renewable and Sustainable Energy Reviews, vol. 78. 2017, doi: 10.1016/j.rser.2017.05.025.

S. Ranieri, G. A. O. Prado, and B. D. MacDonald, “Efficiency reduction in stirling engines resulting from sinusoidal motion,” Energies, vol. 11, no. 11, 2018, doi: 10.3390/en11112887.

A. Ibrahim, P. L. Chong, V. Rajasekharan, M. M. Ali, O. S. Zaroong, and N. O. Ahmed, “Investigation of the effect of different materials on convective heat transfer,” J. Mech. Eng. Sci., vol. 14, no. 2, 2020, doi: 10.15282/jmes.14.2.2020.08.0520.

A. A. Mohamed and O. Younis, “Performance of drop shaped pin fin heat exchanger with four different fin dimensions,” J. Mech. Eng. Sci., vol. 14, no. 2, 2020, doi: 10.15282/jmes.14.2.2020.31.0543.

M. I. N. Ma’Arof, G. T. Chala, H. Husain, and M. S. S. Mohamed, “Influence of fins designs, geometries and conditions on the performance of a plate-fin heat exchanger-experimental perspective,” J. Mech. Eng. Sci., vol. 13, no. 1, 2019, doi: 10.15282/jmes.13.1.2019.02.0372_rfseq1.

D. Sahel, H. Ameur, and M. Mellal, “Effect of tube shape on the performance of a fin and tube heat exchanger,” J. Mech. Eng. Sci., vol. 14, no. 2, 2020, doi: 10.15282/jmes.14.2.2020.13.0525.

M. Briggs, “Improving Free-Piston Stirling Engine Power Density,” Case Western Reserve University, 2015.

V. K. Gopal, “Active Stirling Engine,” University of Canterbury, 2012.

H. W. Fang, K. E. Herold, H. M. Holland, and E. H. Beach, “Novel Stirling engine with an elliptic drive,” in Proceedings of the Intersociety Energy Conversion Engineering Conference, 1996, vol. 2, doi: 10.1109/iecec.1996.553887.

J. Podešva and Z. Poruba, “The Stirling engine mechanism optimization,” Perspect. Sci., vol. 7, 2016, doi: 10.1016/j.pisc.2015.11.052.

M. Jaśkiewicz, W. Sadkowski, M. Marciniewski, K. Olejnik, and J. Stokłosa, “Proposal of the New Concept of the Stirling Engine,” Sci. Journals Marit. Univ. Szczerin, vol. 35, no. 107, pp. 32–37, 2013.

J. D. Van de Ven, “Mobile hydraulic power supply: Liquid piston Stirling engine pump,” Renewable Energy, vol. 34, no. 11. 2009, doi: 10.1016/j.renene.2009.01.020.

Y. Kato, “Indicated diagrams of a low temperature differential Stirling engine using flat plates as heat exchangers,” Renew. Energy, vol. 85, 2016, doi: 10.1016/j.renene.2015.07.053.

R. L. Norton, Design of Machinery: an Introduction to the Synthesis and Analysis of Mechanisms and Machines, 5th ed. New York: McGraw-Hill, 2012.

Downloads

Published

2020-09-30

How to Cite

[1]
H. Wong and S. Goh, “Experimental comparison of sinusoidal motion and non-sinusoidal motion of rise-dwell-fall-dwell in a Stirling engine”, J. Mech. Eng. Sci., vol. 14, no. 3, pp. 6971–6981, Sep. 2020.