The properties of slag-silica fume ternary blended mortar with quarry dust

Authors

  • Chow Wee Kang School of Housing, Building & Planning, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia, Phone: +60177824893.
  • Cheah Chee Ban School of Housing, Building & Planning, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia, Phone: +60177824893.
  • Oo Chuan Wei School of Chemical Sciences, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
  • Part Wei Ken Macro Dimension Concrete Sdn. Bhd. Bandar Amanjaya, Sungai Petani, Kedah 08000 Malaysia.
  • Leow Khang Heng Macro Dimension Concrete Sdn. Bhd. Bandar Amanjaya, Sungai Petani, Kedah 08000 Malaysia.

DOI:

https://doi.org/10.15282/jmes.14.1.2020.19.0504

Keywords:

High strength mortar, ternary blended, GGBS, densified silica fume, quarry dust

Abstract

High carbon emissions of manufactured Portland cement in the concrete industry have incurred several interests in reducing the use of Portland cement by partially replacing it with supplementary cementitious materials. Most of which, are by-products from other manufacturing industries. Hence, the main purpose of this study is to investigate the effects of different combinations of ternary blended mortars incorporating supplementary cementitious materials such as Ground Granulated Blast Furnace Slag (GGBS) and Densified Silica Fume (DSF). In this study, mortars were prepared with 100% quarry dust and GGBS was replaced with DSF at 2% step increments up to 16% at a w/b ratio of 0.24. At the same time OPC content was fixed at 50%. The compressive and flexural strength, drying shrinkage, and porosity of mortars were all tested. The results indicated that the increasing DSF content increases; GGBS reduces the superplasticizer dosage for the desired workability of the mortar. The utilization GGBS and DSF has improved the performances ternary blended mortar incorporating quarry dust as a fine aggregate in terms of mechanical strength, drying shrinkage and total porosity tested. The high strength ternary blended mortar incorporating GGBS and DSF exhibited optimum mechanical and durability performance at the OPC:GGBS:DSF ratio of 50:38:12.

Downloads

Published

2020-03-23

How to Cite

[1]
C. Wee Kang, C. Chee Ban, O. Chuan Wei, P. W. Ken, and L. K. Heng, “The properties of slag-silica fume ternary blended mortar with quarry dust”, J. Mech. Eng. Sci., vol. 14, no. 1, pp. 6443–6451, Mar. 2020.