Fatigue Life Evaluation of Suspension Knuckle using Multibody Simulation Technique

Authors

  • M. Kamal Faculty of Mechanical Engineering Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
  • M.M. Rahman Faculty of Mechanical Engineering Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
  • A.G. A. Rahman Faculty of Mechanical Engineering Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia

DOI:

https://doi.org/10.15282/jmes.3.2012.5.0027

Keywords:

Fatigue, multibody simulation, suspension system, knuckle, strain-life method, maximum principal stress.

Abstract

Suspension is part of automotive systems, providing both vehicle control and passenger comfort. The knuckle is an important part within the suspension system, constantly encountering the cyclic loads subjecting it to fatigue failure. This paper presents an evaluation of the fatigue characteristics of a knuckle using multibody simulation (MBS) techniques. Load time history extracted from the MBS is used for stress analysis. An actual road profile of road bumps was used as the input to MBS. The stress fluctuations for fatigue simulations are considered with the road profile. The strain-life method is utilized to assess the fatigue life. The instantaneous stress distributions and maximum principal stress are used for fatigue life predictions. Mesh sensitivity analysis has been performed. The results show that the steering link in the knuckle is found to be the most susceptible region for fatigue failure. The number of times the knuckle can manage a road bump at 40 km/hr is determined to be approximately 371 times with a 50% certainty of survival. The proposed method of using the loading time history extracted from MBS simulation for fatigue life estimation is found to be very promising for the accurate evaluation of the performance of suspension system components.

References

Azrulhisham, E. A., Asri, Y. M., Dzuraidahm, A. W., Nik Abdullah, N. M., Shahrum, A., & Che Hassan, C. H. (2010). Evaluation of fatigue life reliability of steering knuckle using Pearson parametric distribution model. International Journal of Quality, Statistics, and Reliability, 1-8.

Bannantine, J. A., Comer, J. J., & Handrock, J. L. (1989). Fundamentals of metal fatigue analysis. New York, Prentice Hall.

EC (European Commission) (2012). Retrieved from http://ec.europa.eu/ transport/ road_safety/specialist/knowledge/pedestrians/ measures_tt_reduce_crash_numbers_and_injury_severity/road_design.htm [Accessed 7th July 2012].

Fatemi, A., & Shamsaei, N. (2011). Multiaxial fatigue: an overview and some approximation models for life estimation. International Journal of Fatigue, 33, 948-958.

GMI (Granta Material Intelligence) (2012). Retrieved from http:// www.grantadesign.com/resources/materials/designations/ferrous.generalcastiron.htm [Accessed 16th June 2012].

Hoffman, M., & Seeger, T. (1989). Estimating multiaxial elastic–plastic notch stresses and strains in combined loading. In: Brown, M. W. and Miller, K. J. (eds.) Biaxial and multiaxial fatigue. EGF3. London, Mechanical Engineering Publications, pp. 3-24.

Kamal, M., & Rahman, M. M. (2012). Study on the dynamic behavior of wishbone suspension system. IOP Conference Series: Materials Science and Engineering, 36(012019), 1-8.

Kang, D. O., Park, K., Heo, S. J., Ryu, Y., & Jeong, J. (2010). Development and application of VPG simulation technique based on equivalent virtual road profile. International Journal of Precision Engineering and Manufacturing, 11(2), 265-272.

Lee, Y. L., Pan, J., Hathaway, R. B., & Barkey, M. E. (2005). Fatigue testing and analysis, theory and practice. Burlington, Elsevier Butterworth–Heinemann.

Liu, Y. (2008). Recent innovations in vehicle suspension systems. Recent Patents on Mechanical Engineering, 1, 206-210.

Fatigue Life Evaluation of Suspension Knuckle using Multibody Simulation Technique

Matsuishi, M., & Endo, T. (1968). Fatigue of metals subjected to varying stress. Fukuoko, Japan, Japan Society of Mechanical Engineers.

Miao, B., Zhang, W., Zhang, J. & Jin, D. (2009). Evaluation of railway vehicle car body fatigue life and durability using multidisciplinary analysis method. International Journal of Vehicle Structures and Systems, 1(4), 85-92.

Miner, A. (1945). Cumulative damage in fatigue. Journal of Applied Mechanics, 12, 159-164.

MP (Magic Precision Inc.) (2012). Retrived from: http://www.gprecision.com/ resources/cast-iron-standards.html [Accessed 20th May 2012].

Palmgren, A. (1924). Durability of ball bearings. ZVDI, 68 (14), 339-341.

Rahman, M. M., Ariffin, A. K., Jamaludin, N., & Haron, C. H. C. (2005). Vibration fatigue analysis of cylinder head of a new two-stroke free piston engine using finite element approach. Structural Integrity and Durability, 1(2), 121-129.

Rahman, M. M., Ariffin, A. K., Jamaludin, N., & Haron, C. H. C. (2006). Influence of surface treatments on fatigue life of a free piston linear generator engine component using Random Loading. Journal of Zhejiang University of Science Part A, 7(11), 1819-1830

Rahman, M. M., Ariffin, A. K., Jamaludin, N., & Haron, C. H. C. (2007). Finite element based durability assessment of a free piston linear engine component. Journal of Structural Durability and Health Monitoring, 3(1), 1-13.

Rahman, M. M., Ariffin, A. K., Abdullah, S., Noor, M. M., Bakar, R. A., & Maleque, M. A. (2008a). Finite element based fatigue life prediction of cylinder head for two-stroke linear engine using stress-life approach. Journal of Applied Sciences, 8(19), 3316-3327.

Rahman, M. M., Ariffin, A. K., Jamaludin, N., Abdullah, S., & Noor, M. M. (2008b). Finite element based fatigue life prediction of a new free piston engine mounting. Journal of Applied Sciences, 8(9), 1612-1621.

Rahman, M. M., Ariffin, A. K., Jamaludin, N., Haron, C. H. C., & Bakar, R. A. (2008c). Fatigue life prediction of two-stroke free piston engine mounting using frequency response approach. European Journal of Scientific Research, 22(4), 480-493

Rahman, M. M., Ariffin, A. K., Rejab, M. R. M., Kadirgama, K., & Noor, M. M. (2009a). Multiaxial fatigue behaviour of cylinder head for a free piston linear engine. Journal of Applied Sciences, 9(15), 2725-2734.

Rahman, M. M., Ariffin, A. K., Abdullah, S., Noor, M. M., & Bakar, R. A. (2009b). Durability assessment of cylinder block for two stroke free piston linear engine using random loading. American Journal of Applied Sciences, 6(4), 726-735.

Rahman, M. M., Kadirgama, K., Noor, M. M., Rejab, M. R. M., & Kesulai, S. A. (2009c). Fatigue life prediction of lower suspension arm using strain-life approach. European Journal of Scientific Research, 30(3), 437-450.

Stephens, R. I., Fatemi, A., Stephens, R. R., & Fuchs, H. O. (2001). Metal fatigue in Engineering. 2nd ed. New York, John Wiley and Sons.

Zoroufi, M., & Fatemi, A. 2006. Experimental durability assessment and life prediction of vehicle suspension components: a case study of steering knuckles. Proceedings of the Institution of Mechanical Engineers Part D, 220(11), 1565- 1579.

Downloads

Published

2012-12-31

How to Cite

[1]
M. . Kamal, M. . Rahman, and A. A. Rahman, “Fatigue Life Evaluation of Suspension Knuckle using Multibody Simulation Technique”, J. Mech. Eng. Sci., vol. 3, no. 1, pp. 291–300, Dec. 2012.

Issue

Section

Article