Thermal Convection of Rivlin-Ericksen Fluid in the Presence of Vertical Rotation

Authors

  • A.S. Banyal Department of Mathematics, Govt. College Nadaun, Dist. Hamirpur, (HP) INDIA 177033
  • D.K. Sharma Department of Mathematics, Rajiv Gandhi G. C. Kotshera, Shimla (HP), INDIA 171004

DOI:

https://doi.org/10.15282/jmes.4.2013.10.0043

Keywords:

Thermal convection; Rivlin-Ericksen Fluid; rotation; PES; Rayleigh number; Taylor number

Abstract

The thermal instability of a Rivlin-Ericksen viscoelastic fluid, acted upon by uniform vertical rotation and heated from below, is investigated. Following linearized stability theory and normal mode analysis, the mathematical analysis of the governing equations of Rivlin-Ericksen viscoelastic fluid convection with a uniform vertical rotation is performed. It is shown that for the cases of rigid boundaries the complex growth rate σ of oscillatory perturbations, neutral or unstable for all wave numbers, must lie inside a semi-circle, in the right-hand half of a complex σ-plane with the center at the origin. This prescribes the upper limits to the complex growth rate of arbitrary oscillatory motions of growing amplitude in a rotatory Rivlin-Ericksen viscoelastic fluid heated from below. Furthermore, the conditions necessary for the existence of oscillatory motions of growing amplitude in the present configuration and the sufficient condition for the validity of the Principle of Exchange of Stabilities are established.

References

Al- Doori, W. H. A. R. (2011). Enhancement of natural convection heat transfer from the rectangular fins by circular perforations. International Journal of Automotive and Mechanical Engineering, 4, 428-436.

Banerjee, M. B., Katoch, D. C., Dube, G. S., & Banerjee, K. (1981). Bounds for growth rate of perturbation in thermohaline convection. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378, 301-304.

Banerjee, M. B., & Banerjee, B. (1984). A characterization of non-oscillatory motions in magnetohydronamics. Indian Journal of Pure and Applied Mathematics, 15(4), 377-382.

Banerjee, M. B., Gupta, J. R., & Prakash, J. (1993). On thermohaline convection of Veronis type. Journal of Mathematical Analysis and Applications, 179, 327-334.

Banyal, A. S. (2011). The necessary condition for the onset of stationary convection in couple-stress fluid. International Journal of Fluid Mechanics Research, 38(5), 450-457.

Banyal, A. S. (2012). Upper limit to the growth rate of perturbations in rivlin-ericksen viscoelastic fluid in the presence of rotation. International Journal of Advances in Engineering Research, 3, 33-42.

Bénard, H. (1900). Les tourbillions cellulaires dans une nappe liquid. Revue Genérale des Sciences Pures et Appliquees,11, 1309-1328.

Bhatia, P. K., & Steiner, J. M. (1972). Convective instability in a rotating viscoelastic fluid layer. Zeitschrift fur Angewandte Mathematik and Mechanik, 52, 321-327.

Bhatia, P. K., & Steiner, J. M. (1973). Thermal instability in a viscoelastic fluid layer in hydromagnetics. Journal of Mathematical Analysis and Applications, 41, 271-283.

Chandrasekhar, S. (1981). Hydrodynamic and hydromagnetic stability. New York: Dover Publication.

Gupta, J. R., Sood, S. K., & Bhardwaj, U. D. (1986). On the characterization of nonoscillatory motions in rotatory hydromagnetic thermohaline convection. Indian Journal of Pure and Applied Mathematics, 17(1),100-107.

Jeffreys, H. (1926). The stability of a fluid layer heated from below. Philosophical Magazine, 2, 833-844.

Kumar, P., Mohan, H., & Lal, R. (2006). Effect of magnetic field on thermal instability of a rotating Rivlin-Ericksen viscoelastic fluid. International Journal of Mathematics and Mathematical Sciences, 2006(28042), 1-10.

Oldroyd, J. G. (1958). Non-Newtonian effects in steady motion of some idealized elastic-viscous liquids. Proceedings of the Royal Society of London A, 245, 278-297.

Pellow, A., & Southwell, R. V. (1940). On the maintained convective motion in a fluid heated from below. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 176, 312-43.

Rana, G. C., & Thakur, R. C. (2012). Effect of suspended particles on thermal convection in Rivlin-Ericksen fluid in A Darcy-Brinkman porous medium. Journal of Mechanical Engineering and Sciences, 2, 162-171.

Rayleigh, L. (1916). On convective currents in a horizontal layer of fluid when the higher temperature is on the underside. Philosophical Magazine, 32, 529-546.

Rivlin, R. S., & Ericksen, J. L. (1955). Stress deformation relations for isotropic materials. Journal of Rational Mechanical Analysis, 4, 323-429.

Satya Narayana, P. V., Ramireddy, G., & Venkataramana, S. (2011). Hall current effects on free-convection MHD flow past a porous plate. International Journal of Automotive and Mechanical Engineering, 3, 350-363.

Schultz, M. H. (1973). Spline analysis, prentice hall. New Jersy: Englewood Cliffs.

Sharma, R. C. (1975). Thermal instability in a viscoelastic fluid in hydromagnetics. Acta Physica Hungarica, 38, 293-298.

Sharma, R. C. (1976). Effect of rotation on thermal instability of a viscoelastic fluid. Acta Physica Hungarica, 40, 11-17.

Sharma, R. C., & Kumar, P. (1996). Effect of rotation on thermal instability in Rivlin-Ericksen elastico-viscous fluid. Zeitschrift fur Naturforschung, 51, 821-824.

Downloads

Published

2013-06-30

How to Cite

[1]
A.S. Banyal and D.K. Sharma, “Thermal Convection of Rivlin-Ericksen Fluid in the Presence of Vertical Rotation”, J. Mech. Eng. Sci., vol. 4, no. 1, pp. 462–471, Jun. 2013.

Issue

Section

Article

Similar Articles

<< < 17 18 19 20 21 22 23 24 25 26 > >> 

You may also start an advanced similarity search for this article.