Effect of fiber and CO2 lasers parameters on the cut surface quality of RVS 1.4301 stainless steel

Authors

  • Ł. Bohdal Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland. Phone: +(94)3478328
  • D. Schmidtke Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland. Phone: +(94)3478328

DOI:

https://doi.org/10.15282/jmes.16.2.2022.05.0701

Keywords:

Laser cutting, Stainless steel , Fiber laser , CO2 laser , Cut surface

Abstract

The paper presents the results of experimental research related to the process of cutting of t = 3 mm and t = 6 mm thick RVS 1.4301 (AISI 304, EN X5CrNi18-10) stainless steel using a fiber and CO2 lasers. The correct selection of technological parameters and the maintenance of the machines in the right technical condition allow obtaining very high quality of the cut edge, which will not require additional mechanical treatment. However, this is a complex issue. Appropriate control of the cutting process requires knowledge about the impact of individual parameters on the process and the quality of the cut edge. The influence of selected parameters and conditions of the laser cutting process on the technological quality of the obtained product was determined. The laser power and cutting speed had a significant influence on the output factors for two cutting techniques.For cutting material with a thickness of t = 3 mm with a CO2 laser, the highest quality of the cut edge was obtained using the power values ​​P = 4200-4300 W and cutting speed v = 2100 mm/min. For the thickness t = 6 mm, the speed values ​​should be approximately set in range v = 1600-1800 mm/min. The power value should be selected in a range from P = 3700 W to P = 4200 W. For a fiber laser with a material thickness of t = 3 mm, the best results were obtained using speeds in the range v = 2000-3300 mm/min. For the thickness of t = 6 mm, the cutting speed must be higher and in the range v = 3500-4000 mm/min while maintaining the power of about P = 4500-4800 W. The conducted experimental research can be useful on production lines in the aspect of the correct selection of technological parameters of the process due to the adopted energy and quality criteria.

References

W. Muzykiewicz, A. Łach, "Analiza możliwości wykonania gęstych perforacji blach niekonwencjonalnymi technikami wysokoenergetycznymi," Obróbka Plastyczna Metali, vol. 18, no. 1, pp. 13–21, 2007 (in Polish).

J. Bujak, "Ocena wpływu wybranych parametrów impulsowej wiązki laserowej na wydajność procesu ablacji tytanu," Problemy eksploatacji, vol. 3, pp. 65–73, 2006 (in Polish).

L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, "Obróbka powierzchni materiałów inżynierskich," Open Access Library, vol. 5, 2011 (in Polish).

GY. Mak, EY. Lam, HW. Choi, "Liquid-immersion laser micromachining of GaN grown on sapphire," App. Phys. A: Mat. Sci. and Proc., vol. 102, no. 2, p. 441–447, 2011.

L. Kukiełka, R. Patyk, Ł. Bohdal, W. Napadłek, R. Gryglicki, P. Kasprzak, "Investigations of polyprophylene foil cutting process using fiber Nb: YAG and diode Nd: YVO lasers," ACTA Mech. Aut., vol. 13, pp. 107–112, 2019.

Ł. Bohdal, L. Kukiełka, R. Patyk, R. Gryglicki, P. Kasprzak, "Application of ultraviolet laser working in cold ablation conditions for cutting labels used in packaging in the food industry," Materials, vol. 13(22), 5245, 2020.

A.F. El-Sherif, M.F. Hassan, K. Hussein, M. Talat, "Comparison between two active media Nd: YAG and Nd: YVO4 rods inside a cavity for producing a high-power 808nm diode end-pumping laser system," Proc. SPIE - The Int. Soc. Opt. Eng., vol. 8235:44, 2012.

Y.J. Huang, Y.P. Huang, P.Y. Chiang, H.C. Liang, K.W. Su, Y.F. Chen, "High-power passively Q-switched Nd:YVO4 UV laser at 355 nm," Appl. Phys. B., vol. 106, pp. 893–898, 2012.

TA. Mai, GC. Lim, "Micromelting and its effects on surface topography and properties in laser polishing of stainless steel," J. Laser Appl., vol. 16(4), pp. 221–228, 2004.

K. Engin, O. Eyercioglu, "Investigation of the process parameters on the blanking of AISI 304 stainless steel by using finite element method," J. Mech. Eng. Aut. vol. 6. pp. 356–363, 2016.

JA. Ramos-Grez, DL. Bourell, "Reducing surface roughness of metallic freeform-fabricated parts using non-tactile finishing methods," Int. J. Mat. Prod. Techn., vol. 21, no. 4, pp. 297–316, 2004.

D. Landgrebe, R. Müller, M. Kott, Shear cutting of stainless steel," WT Werkstattstechnik, vol. 105, pp. 726–732, 2015.

Y. Arslan, A. Özdemir, "Punch structure, punch wear and cut profiles of AISI 304 stainless steel sheet blanks manufactured using cryogenically treated AISI D3 tool steel punches," Int. J. Adv. Manuf. Technol., vol. 87, pp. 587–599, 2016.

Ł. Bohdal, L. Kukiełka, S. Legutko, R. Patyk, A.M. Radchenko, "Modeling and experimental analysis of shear-slitting of AA6111-T4 aluminum alloy sheet," Materials, vol. 13(4), 3175, 2020.

Ł. Bohdal, R. Patyk, K. Tandecka, S. Gontarz, D. Jackiewicz, "Influence of shear-slitting parameters on workpiece formation, cut edge quality and selected magnetic properties for grain-oriented silicon steel," J. Man. Proc., vol. 56, Part A, pp. 1007–1026, 2020.

I. Miraouri, M. Boujelbene, E. Bayraktar, "Analysis of roughness and heat affected zone of steel plates obtained by laser cutting," Adv. Mat. Res., vol. 974, pp. 169–173, 2014.

F. Caiazzo, F. Ciurcio, G. F. Daurelio, Memola Capece Minutolo, "Laser cutting of different polymeric plastics (PE, PP and PC) by CO2 laser beam," J. of Mat. Proc. Tech., vol. 159, pp. 279-285, 2005.

M. Uebel, J. Bliedtner, "Laser precision cutting of high-melting metal foils," Proc. Eng., vol. 69, pp. 99–103, 2014.

K. Tamura, R. Yamagishi, "Observation of the molten metal behaviors during the laser cutting of thick steel specimens using attenuated process images," J. Nucl. Sci. Technol. vol. 54, pp. 655–661, 2017.

L. D. Scintilla, D. Sorgente, G. Palumbo, L. Tricarico, M. Brandizzi, A. A. Satriano, "Influence of fiber laser cutting parameters on the subsequent laser welding of Ti6Al4V sheets," ICALEO 2011, 25-33, 2011.

B.S. Wardhana, K. Anam, R.M. Ogana, A. Kurniawan, Laser cutting parameters effect on 316L stainless steel surface. IOP Conf. Series: Mat. Sci. Eng. vol. 494, 012041, pp. 1–6, 2019.

R. Pawlak, M. Tomczyk, M. Walczak, Zastosowanie laserów włóknowych w elektronice i technice mikrosystemów. Mechanik, no. 2/2016, pp. 78–82, 2016(in Polish).

H. Qi, T. Chen, TC. Zuo, "Surface roughness analysis and improvement of micro-fluidic channel with excimer laser," Mic. Nan. vol. 2, pp. 357–360, 2006.

M. Sozzi, K. Tragni, S. Selleri, A. Cucinotta, A.H.A. Lutey, P.G. Molari, S. Carmignato, "Draft: Picosecond and nanosecond pulsed laser ablation of aluminium foil," Proc. ASME Man. Sci. Eng. Conf. MSEC2013, June 10-14, 2013, Madison, Wisconsin, USA.

FL. Zhang, X. Fu, Q. Lin, "Laser spot size of real-time detection and control system for laser polishing," Proc. SPIE, vol. 7997:79972c, 2010.

I. Mirza, N.M Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, T. Mocek, "Ultrashort pulse laser ablation of dielectrics: Tresholds, mechanisms, role of breakdown," Sci. Rep. vol. 6, 39133, 2016.

G. Witkowski, S. Tofl, K. Mulczyk, "Effect of laserbeam trajectory on pocketgeometry in lasermicromachining," Open Eng. vol. 10, pp. 830–838, 2020.

C. Kerse et al., "Ablation cooled material removal with ultrafast bursts of pulses," Nature, vol. 537, pp. 84–88, 2016.

L. Kukiełka, "Basics of Engineering Research," PWN: Warsaw, Poland, 2002.

L. Kukielka, "Mathematical modelling and numerical simulation of non-linear deformation of the asperity in the burnishing cold rolling operation. Comp. Met. Cont. Mech. V: Proc. of the 5th Int. Conf. on Comp. Met. in Cont. Mech., Seville, Spain, 2001; Book Series: Computational and Experimental Methods; WIT Press: Ashurst, UK, 2001; pp. 317–326.

L. Kukiełka, S. Kukiełka, "Experiment planner. Computer program for planning exploratory and proper experiments as well as Identification and analysis of the mathematical model of the research object. User Guide, Technical University of Koszalin: Koszalin, Poland, 2002.

L. Kukiełka, "New damping models of metallic materials and its application in non-linear dynamical cold processes of metal forming," Proc. 13th Int. Conf. Met. Form. 2010, Toyohashi, Japan, 19–22, September 2010; Verlag StahleisenGmbH: Düsseldorf, Germany, 2010; pp. 1482–1485.

L. Bohdal, "Application of a SPH coupled FEM method for simulation of trimming of aluminum autobody sheet. ACTA Mech. Aut., vol.10 no.1, pp. 56-67, 2016.

Downloads

Published

2022-06-30

How to Cite

[1]
Łukasz Bohdal and D. Schmidtke, “Effect of fiber and CO2 lasers parameters on the cut surface quality of RVS 1.4301 stainless steel ”, J. Mech. Eng. Sci., vol. 16, no. 2, pp. 8862–8872, Jun. 2022.

Issue

Section

Article

Similar Articles

<< < 20 21 22 23 24 25 26 27 28 29 > >> 

You may also start an advanced similarity search for this article.