Acoustic scattering reduction in elastic materials with Bat optimization algorithm
DOI:
https://doi.org/10.15282/jmes.15.1.2021.24.0624Keywords:
Acoustic scattering, elastic material, Bat algorithim, optimizationAbstract
A scattering-cancelation method is followed in this analysis. The opportunity to reduce the scattering effect in rigid cylinder with elastic cloaking material is investigated in the paper. The rigid cylinder with elastic cloaking and without elastic cloaking is analyzed for regular planes waves to test the scattering effect of the rigid cylinder. The energy due to reflected and travelled waves is presented mathematically. The parameter of the elastic cloaking such as thickness, density and Poisson ratio are optimized using BAT algorithm. Pressure filed of the rigid cylinder and directivity patterns scatter pressures in the cylinder are analyzed. The results revealed that, bat algorithm optimization provide the better results for elastic cloaking in the cylinder to reduce scattering effect.
References
J. W. Miles, “The analysis of plane discontinuities in cylindrical tubes. Part I”, J. Acoust. Soc. Am., vol. 17, no. 3, pp. 259–271, 1946, doi: 10.1121/1.1916327.
H. Levine and J. Schwinger, “On the radiation of sound from an unflanged circular pipe”, Phys. Rev., vol. 73, no. 4, p. 383, 1948, doi: 10.1007/3-540-29224-1_26.
U. Ingård, “On the radiation of sound into a circular tube, with an application to resonators”, J. Acoust. Soc. Am., vol. 20, no. 5, pp. 665–682, 1948, doi: 10.1121/1.1906424.
F. C. Karal, “The analogous acoustical impedance for discontinuities and constrictions of circular cross section”, J. Acoust. Soc. Am., vol. 25, no. 2, pp. 327–334, 1953, doi: 10.1121/1.1907041.
A. Cummings, “Sound transmission at sudden area expansions in circular ducts, with superimposed mean flow”, J. Sound Vib., vol. 38, no. 1, pp. 149-155, 1975, doi: 10.1016/s0022-460x(75)80024-1.
M. L. Munjal, “Velocity ratio-cum-transfer matrix method for the evaluation of a muffler with mean flow”, J. Sound Vib., vol. 39, no. 1, pp. 105–119, 1975, doi: 10.1016/s0022-460x(75)80211-2.
A. M. Cargill, “Low frequency acoustic radiation from a jet pipe—a second order theory”, J. Sound Vib., vol. 83, no. 3, pp. 339–354, 1982, doi: 10.1016/s0022-460x(82)80097-7.
J. Ih and B. Lee, “Analysis of higher‐order mode effects in the circular expansion chamber with mean flow”, J. Acoust. Soc. Am., vol. 77, no. 4, pp. 1377–1388, 1985, doi: 10.1121/1.392029.
K. S. Peat, “The acoustical impedance at discontinuities of ducts in the presence of a mean flow”, J. Sound Vib., vol. 127, no. 1, pp. 123–132, 1988, doi: 10.1016/0022-460x(88)90353-7.
J. B. Lawrie and I. D. Abrahams, “Acoustic radiation from two opposed semi-infinite coaxial cylindrical waveguides. II: separated ducts”, Wave motion, vol. 19, no. 1, pp. 83–109, 1994, doi: 10.1016/0165-2125(94)90014-0.
S. Föller and W. Polifke, “Identification of aero-acoustic scattering matrices from large eddy simulation. Application to a sudden area expansion of a duct”, J. Sound Vib., vol. 331, no. 13, pp. 3096–3113, 2012, doi: 10.1016/j.jsv.2012.01.004.
J. B. Lawrie, “An infinite, elastic, cylindrical shell with a finite number of ring constraints”, J. Sound Vib., vol. 130, no. 2, pp. 189–206, 1989, doi: 10.1016/0022-460x(89)90549-x.
M. C. Junger and D. Feit, “Sound, structures, and their interaction”, MIT press Cambridge, MA, vol. 225, 1986, doi: 10.1016/0022-460x(87)90421-4.
P. Stepanishen and R. A. Tougas Jr, “Transient acoustic pressure radiated from a finite duct”, J. Acoust. Soc. Am., vol. 93, no. 6, pp. 3074–3084, 1993, doi: 10.1121/1.405739.
B. Zhang and I. D. Abrahams, “The radiation of sound from a finite ring-forced cylindrical elastic shell I. Wiener–Hopf analysis”, Proc. R. Soc. London. Ser. A Math. Phys. Sci., vol. 450, no. 1938, pp. 89–108, 1995, doi: 10.1098/rspa.1995.0073.
C. Dutrion and F. Simon, “Acoustic scattering reduction using layers of elastic materials”, J. Sound Vib., vol. 388, pp. 53–68, 2017, doi: 10.1016/j.jsv.2016.10.034.
Y. Qiao, H. Wang, X. Liu, and X. Zhang, “Acoustic radiation force on an elastic cylinder in a Gaussian beam near an impedance boundary”, Wave Motion, vol. 93, p. 102478, 2020, doi: 10.1016/j.wavemoti.2019.102478.
Z. Gong, W. Li, Y. Chai, Y. Zhao, and F. G. Mitri, “T-matrix method for acoustical Bessel beam scattering from a rigid finite cylinder with spheroidal endcaps”, Ocean Eng., vol. 129, pp. 507–519, 2017, doi: 10.1016/j.oceaneng.2016.10.043.
G. S. Sharma, A. Skvortsov, I. MacGillivray, and N. Kessissoglou, “Acoustic performance of periodic steel cylinders embedded in a viscoelastic medium”, J. Sound Vib., vol. 443, pp. 652–665, 2019, doi: 10.1016/j.jsv.2018.12.013.
J. V. Venås and T. Kvamsdal, “Isogeometric boundary element method for acoustic scattering by a submarine”, Comput. Methods Appl. Mech. Eng., vol. 359, p. 112670, 2020, doi: 10.1016/j.cma.2019.112670.
K. Premkumar and B. V Manikandan, “Bat algorithm optimized fuzzy PD based speed controller for brushless direct current motor”, Eng. Sci. Technol. an Int. J., vol. 19, no. 2, pp. 818–840, 2016, doi: 10.1016/j.jestch.2015.11.004.
K. Premkumar and B. V Manikandan, “Speed control of Brushless DC motor using bat algorithm optimized Adaptive Neuro-Fuzzy Inference System”, Appl. Soft Comput., vol. 32, pp. 403–419, 2015, doi: 10.1016/j.asoc.2015.04.014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.