Numerical analysis and explore of asymmetrical fluid flow in a two-sided lid-driven cavity

Authors

  • El Amin Azzouz Institute of Maintenance and Industrial Safety, University Mohammed Ben Ahmed Oran 2, Oran, Algeria
  • Samir Houat MSMPT Group, MNEPM Laboratory University of Abdelhamid IbnBadis of Mostaganem, Mostaganem, Algeria

DOI:

https://doi.org/10.15282/jmes.14.3.2020.26.0571

Keywords:

Two-sided lid-driven cavity, asymmetrical driving, Finite Volume Method, analysis flow solutions

Abstract

The two-dimensional asymmetrical flow in a two-sided lid-driven square cavity is numerically analyzed by the finite volume method (FVM). The top and bottom walls slide in parallel and antiparallel motions with various velocity ratio (UT/Ub=λ) where |λ|=2, 4, 8, and 10. In this study, the Reynolds number Re1 = 200, 400, 800 and 1000 is applied for the upper side and Re2 = 100 constant on the lower side. The numerical results are presented in terms of streamlines, vorticity contours and velocity profiles. These results reveal the effect of varying the velocity ratio and consequently the Reynolds ratio on the flow behaviour and fluid characteristics inside the cavity. Unlike conventional symmetrical driven flows, asymmetrical flow patterns and velocity distributions distinct the bulk of the cavity with the rising Reynolds ratio. For λ>2, in addition to the main vortex, the parallel motion of the walls induces two secondary vortices near the bottom cavity corners. however, the antiparallel motion generates two secondary vortices on the bottom right corner. The parallel flow proves affected considerably compared to the antiparallel flow.

References

Z. Cao and M. N. Esmail, "Numerical study on hydrodynamics of short-dwell paper coaters," AIChE J., vol. 41, no. 8, pp. 1833-1842, 1995, doi: 10.1002/aic.690410802.

P. Gaskell, J. Summers, H. Thompson, and M. Savage, "Creeping flow analyses of free surface cavity flows," Theor. Comp. Fluid. Dyn., vol. 8, no. 6, pp. 415-433, 1996, doi: 10.1007/s001620050025.

C. Leong and J. Ottino, "Experiments on mixing due to chaotic advection in a cavity," J. Fluid. Mech., vol. 209, pp. 463-499, 1989, doi: 10.1017/S0022112089003186.

A. Kouadri, Y. Lasbet, and M. Makhlouf, "High mixing performances of shear-thinning fluids in two-layer crossing channels micromixer at very low Reynolds numbers," J. Mech. Eng. Sci., vol. 13, no. 4, pp. 5938-5960, 2019, doi: 10.15282/jmes.13.4.2019.15.0471.

N. Alleborn, H. Raszillier, and F. Durst, "Lid-driven cavity with heat and mass transport," Int. J. Heat. Mass. Transf., vol. 42, no. 5, pp. 833-853, 1999, doi: 10.1016/S0017-9310(98)00224-5.

O. R. Burggraf, "Analytical and numerical studies of the structure of steady separated flows," J. Fluid. Mech., vol. 24, no. 1, pp. 113-151, 1966, doi: 10.1017/S0022112066000545.

U. Ghia, K. N. Ghia, and C. Shin, "High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method," J. Comput. Phys., vol. 48, no. 3, pp. 387-411, 1982, doi: 10.1016/0021-9991(82)90058-4.

J. Koseff and R. Street, "Visualization studies of a shear driven three-dimensional recirculating flow," J. Fluids. Eng., vol. 106, pp. 21-27, 1984, doi: 10.1115/1.3242393.

J. R. Koseff and R. Street, "On end wall effects in a lid-driven cavity flow," J. Fluids. Eng., vol. 106, pp. 385-389, 1984, doi: 10.1115/1.3243135.

A. K. Prasad and J. R. Koseff, "Reynolds number and end-wall effects on a lid-driven cavity flow," Phys. Fluids. A: Fluid. Dyn., vol. 1, no. 2, pp. 208-218, 1989, doi: 10.1063/1.857491.

M. Idris, M. Irwan, and N. Ammar, "Steady state vortex structure of lid driven flow inside shallow semi ellipse cavity," J. Mech. Eng. Sci., vol. 2, pp. 206-216, 2012, doi: 10.15282/jmes.2.2012.8.0019.

M. A. Ismael, "Numerical solution of mixed convection in a lid-driven cavity with arc-shaped moving wall," Eng. Computation., vol. 34, pp. 869-891, 2017, doi: 10.1108/EC-11-2015-0368.

N. Ali, M. Nazeer, T. Javed, and F. Abbas, "A numerical study of micropolar flow inside a lid-driven triangular enclosure," Meccanica., vol. 53, no. 13, pp. 3279-3299, 2018, doi: 10.1007/s11012-018-0884-5.

N. Ali, M. Nazeer, T. Javed, and M. Razzaq, "Finite element analysis of bi-viscosity fluid enclosed in a triangular cavity under thermal and magnetic effects," Eur. Phys. J. Plus., vol. 134, no. 1, pp. 1-20, 2019, doi: 10.1140/epjp/i2019-12448-x.

M. Nazeer, N. Ali, and T. Javed, "Numerical simulations of MHD forced convection flow of micropolar fluid inside a right-angled triangular cavity saturated with porous medium: Effects of vertical moving wall," Can. J. Phys., vol. 97, no. 1, pp. 1-13, 2019, doi: 10.1139/cjp-2017-0904.

M. Nazeer, N. Ali, and T. Javed, "Effects of moving wall on the flow of micropolar fluid inside a right angle triangular cavity," Int. J. Numer. Method. H., vol. 28, pp. 2404-2422, 2018, doi: 10.1108/HFF-10-2017-0424.

H. Kuhlmann, M. Wanschura, and H. Rath, "Flow in two-sided lid-driven cavities: non-uniqueness, instabilities, and cellular structures," J. Fluid. Mech., vol. 336, pp. 267-299, 1997, doi: 10.1017/S0022112096004727.

H. Kuhlmann, M. Wanschura, and H. Rath, "Elliptic instability in two-sided lid-driven cavity flow," Eur. J. Mech. B/Fluids., vol. 17, no. 4, pp. 561-569, 1998, doi: 10.1016/S0997-7546(98)80011-3.

S. Albensoeder, H. Kuhlmann, and H. Rath, "Multiplicity of steady two-dimensional flows in two-sided lid-driven cavities," Theor. Comp. Fluid. Dyn., vol. 14, no. 4, pp. 223-241, 2001, doi: 10.1007/s001620050138.

W.-J. Luo and R.-J. Yang, "Multiple fluid flow and heat transfer solutions in a two-sided lid-driven cavity," Int. J. Heat. Mass. Transf., vol. 50, no. 11-12, pp. 2394-2405, 2007, doi: 10.1016/j.ijheatmasstransfer.2006.10.025.

K. Chen, C. Tsai, W. Luo, C. Lu, and C. Chen, "Aspect ratio effect on multiple flow solutions in a two-sided parallel motion lid-driven cavity," J. Mech., vol. 31, no. 2, pp. 153-160, 2015, doi: 10.1017/jmech.2014.51.

K.-T. Chen, C.-C. Tsai, W.-J. Luo, and C.-N. Chen, "Multiplicity of steady solutions in a two-sided lid-driven cavity with different aspect ratios," Theor. Comp. Fluid. Dyn., vol. 27, no. 6, pp. 767-776, 2013, doi: 10.1007/s00162-013-0296-z.

K. T. Chen, C. C. Tsai, and W. J. Luo, "Multiplicity flow solutions in a four-sided lid-driven cavity," in Applied Mechanics Materials., 2013, vol. 368: Trans Tech Publ, pp. 838-843, doi: 10.4028/www.scientific.net/AMM.368-370.838.

T. Lemée, G. Kasperski, G. Labrosse, and R. Narayanan, "Multiple stable solutions in the 2D symmetrical two-sided square lid-driven cavity," Comput. Fluids., vol. 119, pp. 204-212, 2015, doi: 10.1016/j.compfluid.2015.05.022.

C. Prasad and A. K. Dass, "Use of an HOC scheme to determine the existence of multiple steady states in the antiparallel lid-driven flow in a two-sided square cavity," Comput. Fluids., vol. 140, pp. 297-307, 2016, doi: 10.1016/j.compfluid.2016.10.013.

D. A. Perumal, "Lattice Boltzmann computation of multiple solutions in a double-sided square and rectangular cavity flows," Therm. Sci. Eng. Prog., vol. 6, pp. 48-56, 2018, doi: 10.1016/j.tsep.2017.10.009.

H. F. Oztop and I. Dagtekin, "Mixed convection in two-sided lid-driven differentially heated square cavity," Int. J. Heat. Mass. transf., vol. 47, no. 8-9, pp. 1761-1769, 2004, doi: 10.1016/j.ijheatmasstransfer.2003.10.016.

D. A. Perumal and A. K. Dass, "Simulation of Incompressible Flows in Two-Sided Lid-Driven Square Cavities. Part I-FDM," CFD. Lett., vol. 2, pp. 13-24, 2010.

D. A. Perumal and A. K. Dass, "Simulation of Incompressible Flows in Two-Sided Lid-Driven Square Cavities. Part II-LBM," CFD. Lett., vol. 2, pp. 25-38, 2010.

D. A. Perumal, "Simulation of flow in Two-Sided Lid-Driven deep cavities by finite difference method," JASTFM., vol. 6, no. 1, pp. 1-6, 2012.

J. Đ. Marković, N. L. Lukić, J. D. Ilić, B. G. Nikolovski, M. N. Sovilj, and I. M. Šijački, "Using the Ansys Fluent for simulation of two-sided lid-driven flow in a staggered cavity," Acta. Period. Technol., vol. 43, pp. 169-178, 2012, doi: 10.2298/APT1243169M.

A. Munir, M. Rizwan, and A. Shah, "Simulation of incompressible flow in two sided lid driven cavity using upwind compact scheme," CFD. Lett., vol. 5, no. 3, pp. 57-66, 2013.

N. A. Che Sidik and S. A. Razali, "Two-sided lid-driven cavity flow at different speed ratio by Lattice Boltzmann method," in Applied Mechanics Materials., 2014, vol.554: Trans Tech Publ, pp. 675-679, doi: 10.4028/www.scientific.net/AMM.554.675.

M. A. Ismael, I. Pop, and A. J. Chamkha, "Mixed convection in a lid-driven square cavity with partial slip," Int. J. Therm. Sci., vol. 82, pp. 47-61, 2014, doi: 10.1016/j.ijthermalsci.2014.03.007.

M. A. Ismael and A. J. Chamkha, "Mixed convection in lid-driven trapezoidal cavities with an aiding or opposing side wall," Numer. Heat. Tr A-Appl., vol. 68, no. 3, pp. 312-335, 2015, doi: 10.1080/10407782.2014.986001.

S. Arun and A. Satheesh, "Analysis of flow behaviour in a two sided lid driven cavity using lattice boltzmann technique," Alex. Eng. J., vol. 54, no. 4, pp. 795-806, 2015, doi: 10.1016/j.aej.2015.06.005.

H. Karmakar and S. K. Pandit, "Numerical Solutions of Incompressible Viscous Flows in a Double-Lid-Driven Cavity," in Applied Mathematics: Springer, 2015, pp. 237-243, doi: 10.1007/978-81-322-2547-8_23.

J. H. Ferziger, M. Perić, and R. L. Street, Computational methods for fluid dynamics. Springer, 2002, doi: 10.1007/978-3-642-56026-2.

S. V. Patankar and D. B. Spalding, "A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows," Int. J. Heat. Mass. Transf., vol. 15, pp. 1787-1806, 1972, doi: 10.1016/B978-0-08-030937-8.50013-1.

O. Botella and R. Peyret, "Benchmark spectral results on the lid-driven cavity flow," Comput. Fluids., vol. 27, no. 4, pp. 421-433, 1998, doi: 10.1016/S0045-7930(98)00002-4.

Downloads

Published

2020-09-30

How to Cite

[1]
E. A. Azzouz and S. Houat, “Numerical analysis and explore of asymmetrical fluid flow in a two-sided lid-driven cavity”, J. Mech. Eng. Sci., vol. 14, no. 3, pp. 7269–7281, Sep. 2020.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.