Nature-inspired solutions to bluff body aerodynamic problems: A review

Authors

  • N. A. Siddiqui Faculty of Engineering and Applied Science, Ontario Tech University, 2000 Simcoe Street, North, Oshawa, ON, L1G 0C5, Canada
  • M. Agelin-Chaab Faculty of Engineering and Applied Science, Ontario Tech University, 2000 Simcoe Street, North, Oshawa, ON, L1G 0C5, Canada

DOI:

https://doi.org/10.15282/jmes.15.2.2021.13.0638

Keywords:

Drag reduction, biomimicry, Flow control in nature, land animals and drag, bird drag reduction, nature-inspired vehicles, wingtips, fish

Abstract

This review investigates the nature-inspired techniques for the optimization of the aerodynamic forces on bluff bodies. To provide a rich understanding of these nature-inspired phenomena, three distinct zones of the species fishes (nektons), birds (avians) and the fast running land animals are considered. This allows contextualizing different capabilities of the species in different environmental necessities. The review follows a trend in which drag reduction capabilities of individual parts of these species, including body shape & size, tails, fins, surface structure, wings, and wingtips, have been explored in detail. By focusing on specific parts, the review examined the methods and physics involved, which provides space to narrate the development of ideas and our current understanding of the nature-inspired drag reduction and their application to bluff body aerodynamics. Consequently, nature-inspired promising areas for future endeavor related to the bluff body has been discussed in detail. It was found that, though, aerospace field has found several bird inspired application but the bluff body flow modification have only few. Similar is the case with fishes and land animals which have not been explored yet for aerodynamic use on the bluff bodies. The crucial importance of passive devices are also highlighted along with the review of their application on the bluff bodies inspired by nature. Furthermore, several of nature-inspired techniques are proposed and compared to facilitate the research in this direction. It provides a fundamental method  to develop nature-inspired flow control devices for the bluff bodies.

Author Biography

M. Agelin-Chaab, Faculty of Engineering and Applied Science, Ontario Tech University, 2000 Simcoe Street, North, Oshawa, ON, L1G 0C5, Canada

Martin Agelin-Chaab, Ph.D., P.Eng.
Associate Professor & Graduate Program Director
Dept. of Automotive, Mechanical and Manufacturing Engineering
Faculty of Engineering and Applied Science
University of Ontario Institute of Technology
2000 Simcoe Street, North, Oshawa, ON, L1G 0C5
Phone: 905-721-8668 ext 5739
Office: ACE 3026

References

J. Scobey-Thal, “Biomimetics: A Short History,” Foreign Policy, p. 1, Dec. 2014.

E. A. Jamsari, M. A. M. Nawi, A. Sulaiman, R. Sidik, Z. Zaidi, and M. Z. A. H. Ashari, “Ibn Firnas and His Contribution to the Aviation Technology of the World,” Adv. Nat. Appl. Sci., vol. 7, no. 1, pp. 74–78, 2013.

R. H. C. Bonser, “Patented Biologically-inspired Technological Innovations: A Twenty Year View,” J. Bionic Eng., vol. 3, no. 1, pp. 39–41, Mar. 2006, doi: 10.1016/S1672-6529(06)60005-X.

L. Yongxiang, “Significance and Progress of Bionics,” J. Bionic Eng., vol. 1, no. 1, pp. 1–3, Mar. 2004, doi: 10.1007/BF03399448.

G. D. Bixler and B. Bhushan, “Rice and butterfly wing effect inspired low drag and antifouling surfaces: A Review,” Crit. Rev. Solid State Mater. Sci., vol. 40, no. 1, pp. 1–37, Jan. 2015, doi: 10.1080/10408436.2014.917368.

B. Bhushan, “Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity,” Beilstein J. Nanotechnol., vol. 2, no. 1, pp. 66–84, Feb. 2011, doi: 10.3762/bjnano.2.9.

D. M. Bushnell and K. J. Moore, “Drag Reduction in Nature,” Annu. Rev. Fluid Mech., vol. 23, no. 1, pp. 65–79, Jan. 1991, doi: 10.1146/annurev.fl.23.010191.000433.

Y. Luo, Y. Liu, D. Zhang, and E. Y. K. Ng, “influence of morphology for drag reduction effect of sharkskin surface,” J. Mech. Med. Biol., vol. 14, no. 02, p. 1450029, Apr. 2014, doi: 10.1142/S0219519414500298.

K. B. Golovin, J. W. Gose, M. Perlin, S. L. Ceccio, and A. Tuteja, “Bioinspired surfaces for turbulent drag reduction,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 374, no. 2073, p. 20160189, Aug. 2016, doi: 10.1098/rsta.2016.0189.

J. F. V Vincent, “Biomimetics — a review,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol. 223, no. 8, pp. 919–939, Nov. 2009, doi: 10.1243/09544119JEIM561.

D. Sameoto and C. Menon, “Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives,” Smart Mater. Struct., vol. 19, no. 10, p. 103001, Oct. 2010, doi: 10.1088/0964-1726/19/10/103001.

G. M. Luz, “Mineralized structures in nature: Examples and inspirations for the design of new composite materials and biomaterials,” Compos. Sci. Technol., vol. 70, no. 13, pp. 1777–1788, Nov. 2010, doi: 10.1016/J.COMPSCITECH.2010.05.013.

E. C. Goldfield, Bioinspired devices : emulating nature’s assembly and repair process. 2018.

F. E. Fish and G. V. Lauder, “passive and active flow control by swimming fishes and mammals,” Annu. Rev. Fluid Mech., vol. 38, no. 1, pp. 193–224, Jan. 2006, doi: 10.1146/annurev.fluid.38.050304.092201.

Y. Luo, X. Xu, D. Li, and W. Song, “Recent developments in fabricating drag reduction surfaces covering biological sharkskin morphology,” Rev. Chem. Eng., vol. 32, no. 1, pp. 93–113, Jan. 2016, doi: 10.1515/revce-2015-0015.

Z. Morris, M. Weissburg, and B. Bras, “Towards a biologically-inspired urban-industrial ecosystem,” Procedia CIRP, vol. 69, pp. 861–866, Jan. 2018, doi: 10.1016/J.PROCIR.2017.11.055.

G. D. Bixler and B. Bhushan, “Fluid Drag Reduction with Shark-Skin Riblet Inspired Microstructured Surfaces,” Adv. Funct. Mater., vol. 23, no. 36, pp. 4507–4528, Sep. 2013, doi: 10.1002/adfm.201203683.

Y. Wang, C. Wu, G. Tan, and Y. Deng, “Reduction in the aerodynamic drag around a generic vehicle by using a non-smooth surface,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 231, no. 1, pp. 130–144, Jan. 2017, doi: 10.1177/0954407016636970.

J. Wang, C. Zhang, Z. Wu, J. Wharton, and L. Ren, “Numerical study on reduction of aerodynamic noise around an airfoil with biomimetic structures,” J. Sound Vib., vol. 394, pp. 46–58, Apr. 2017, doi: 10.1016/J.JSV.2016.11.021.

G. M. Whitesides, “Bioinspiration: something for everyone.,” Interface Focus, vol. 5, no. 4, p. 20150031, Aug. 2015, doi: 10.1098/rsfs.2015.0031.

A. Reif, W. E., & Dinkelacker, “Hydrodynamics of the squamation infast swimming sharks,” Neues Jahrb. fuer Geol. Palaeontol., pp. 184–187, 1982.

M. J. Walsh, “Riblets as a Viscous Drag Reduction Technique,” AIAA J., vol. 21, no. 4, pp. 485–486, Apr. 1983, doi: 10.2514/3.60126.

D. W. Bechert, M. Bartenwerfer, G. Hoppe, and W.-E. Reif, “Drag reduction mechanisms derived from shark skin,” ICAS, Congr. 15th, London, England, Sept. 7-12, 1986, Proceedings. Vol. 2 (A86-48976 24-01). New York, Am. Inst. Aeronaut. Astronaut. Inc., 1986, p. 1044-1068., vol. 2, pp. 1044–1068, 1986, Accessed: Jun. 20, 2019. [Online]. Available: http://adsabs.harvard.edu/abs/1986icas....2.1044B.

G. D. Bixler and B. Bhushan, “Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces,” Nanoscale, vol. 5, no. 17, p. 7685, Aug. 2013, doi: 10.1039/c3nr01710a.

Y. F. Fu, C. Q. Yuan, and X. Q. Bai, “Marine drag reduction of shark skin inspired riblet surfaces,” Biosurface and Biotribology, vol. 3, no. 1, pp. 11–24, Mar. 2017, doi: 10.1016/J.BSBT.2017.02.001.

A. Mohammadi and J. M. Floryan, “Groove optimization for drag reduction,” Phys. Fluids, vol. 25, no. 11, p. 113601, Nov. 2013, doi: 10.1063/1.4826983.

X. Pu, G. Li, and Y. Liu, “Progress and perspective of studies on biomimetic shark skin drag reduction,” ChemBioEng Rev., vol. 3, no. 1, pp. 26–40, Feb. 2016, doi: 10.1002/cben.201500011.

V. Stenzel, Y. Wilke, and W. Hage, “Drag-reducing paints for the reduction of fuel consumption in aviation and shipping,” Prog. Org. Coatings, vol. 70, no. 4, pp. 224–229, Apr. 2011, doi: 10.1016/J.PORGCOAT.2010.09.026.

D. W. Bechert, M. Bruse, W. Hage, and R. Meyer, “Fluid Mechanics of Biological Surfaces and their Technological Application,” Naturwissenschaften, vol. 87, no. 4, pp. 157–171, Apr. 2000, doi: 10.1007/s001140050696.

J. Anders, “Biomimetic flow control,” in Fluids 2000 Conference and Exhibit, Jun. 2000, doi: 10.2514/6.2000-2543.

T. Y. Wu, “Fish Swimming and Bird/Insect Flight,” Annu. Rev. Fluid Mech., vol. 43, no. 1, pp. 25–58, Jan. 2011, doi: 10.1146/annurev-fluid-122109-160648.

B. Dean and B. Bhushan, “Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 368, no. 1929, pp. 4775–4806, Oct. 2010, doi: 10.1098/rsta.2010.0201.

D. T. Roper, S. Sharma, R. Sutton, and P. Culverhouse, “A review of developments towards biologically inspired propulsion systems for autonomous underwater vehicles,” Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 225, no. 2, pp. 77–96, May 2011, doi: 10.1177/1475090210397438.

L. H. Shu, K. Ueda, I. Chiu, and H. Cheong, “Biologically inspired design,” CIRP Ann., vol. 60, no. 2, pp. 673–693, Jan. 2011, doi: 10.1016/J.CIRP.2011.06.001.

B. Bhushan and Y. C. Jung, “Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction,” Prog. Mater. Sci., vol. 56, no. 1, pp. 1–108, Jan. 2011, doi: 10.1016/J.PMATSCI.2010.04.003.

X. Han, D. Zhang, X. Li, and Y. Li, “Bio-replicated forming of the biomimetic drag-reducing surfaces in large area based on shark skin,” Sci. Bull., vol. 53, no. 10, pp. 1587–1592, May 2008, doi: 10.1007/s11434-008-0219-3.

T. Lenau, H. Cheong, and L. Shu, “Sensing in nature: using biomimetics for design of sensors,” Sens. Rev., vol. 28, no. 4, pp. 311–316, Sep. 2008, doi: 10.1108/02602280810902604.

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today, vol. 5, no. 2, pp. 117–127, Apr. 2010, doi: 10.1016/J.NANTOD.2010.03.001.

K. Liu and L. Jiang, “Bio-inspired design of multiscale structures for function integration,” Nano Today, vol. 6, no. 2, pp. 155–175, Apr. 2011, doi: 10.1016/J.NANTOD.2011.02.002.

J. McKittrick et al., “Energy absorbent natural materials and bioinspired design strategies: A review,” Mater. Sci. Eng. C, vol. 30, no. 3, pp. 331–342, Apr. 2010, doi: 10.1016/J.MSEC.2010.01.011.

L. Raibeck, J. Reap, and B. Bras, “Investigating environmental burdens and benefits of biologically inspired self-cleaning surfaces,” CIRP J. Manuf. Sci. Technol., vol. 1, no. 4, pp. 230–236, Jan. 2009, doi: 10.1016/J.CIRPJ.2009.05.004.

H. A. Abdulbari, H. D. Mahammed, and Z. B. Y. Hassan, “Bio-Inspired Passive Drag Reduction Techniques: A Review,” ChemBioEng Rev., vol. 2, no. 3, pp. 185–203, Jun. 2015, doi: 10.1002/cben.201400033.

R. Godoy-Diana and B. Thiria, “On the diverse roles of fluid dynamic drag in animal swimming and flying.,” J. R. Soc. Interface, vol. 15, no. 139, 2018, doi: 10.1098/rsif.2017.0715.

M. A. Aldheeb, W. Asrar, E. Sulaeman, and A. A. Omar, “A review on aerodynamics of nonflapping bird wings,” J. Aerosp. Technol. Manag., vol. 8, no. 1, pp. 7–17, 2016, doi: 10.5028/jatm.v8i1.564.

Z. Guo, W. Liu, and B.-L. Su, “Superhydrophobic surfaces: From natural to biomimetic to functional,” J. Colloid Interface Sci., vol. 353, no. 2, pp. 335–355, Jan. 2011, doi: 10.1016/J.JCIS.2010.08.047.

R. Lockwood, J. P. Swaddle, and J. M. V. Rayner, “Avian Wingtip Shape Reconsidered: Wingtip Shape Indices and Morphological Adaptations to Migration,” J. Avian Biol., vol. 29, no. 3, p. 273, Sep. 1998, doi: 10.2307/3677110.

E. Lurie-Luke, “Product and technology innovation: What can biomimicry inspire?,” Biotechnol. Adv., vol. 32, no. 8, pp. 1494–1505, Dec. 2014, doi: 10.1016/J.BIOTECHADV.2014.10.002.

A. M. Savill, “Drag Reduction by Passive Devices—a Review of some Recent Developments,” in Structure of Turbulence and Drag Reduction, Berlin, Heidelberg: Springer Berlin Heidelberg, 1990, pp. 429–465.

J. V. Shreyas, S. Devranjan, and K. R. Sreenivas, “Aerodynamics of bird and insect flight,” J. Indian Inst. Sci., vol. 91, no. 3, pp. 315–327, 2011.

N. A. Siddiqui, W. Asrar, and E. Sulaeman, “Literature review: Biomimetic and conventional aircraft wing tips,” Int. J. Aviat. Aeronaut. Aerosp., vol. 4, no. 2, 2017, doi: 10.15394/ijaa.2017.1172.

G. Yunqing, L. Tao, M. Jiegang, S. Zhengzan, and Z. Peijian, “Analysis of Drag Reduction Methods and Mechanisms of Turbulent.,” Appl. bionics Biomech., vol. 2017, p. 6858720, 2017, doi: 10.1155/2017/6858720.

D. Kim, H. Lee, W. Yi, and H. Choi, “A bio-inspired device for drag reduction on a three-dimensional model vehicle,” Bioinspir. Biomim., vol. 11, no. 2, p. 026004, Mar. 2016, doi: 10.1088/1748-3190/11/2/026004.

N. Mazellier, A. Feuvrier, and A. Kourta, “Biomimetic bluff body drag reduction by self-adaptive porous flaps,” Comptes Rendus Mécanique, vol. 340, no. 1–2, pp. 81–94, Jan. 2012, doi: 10.1016/J.CRME.2011.11.006.

M. R. Arifin, A. F. M. Yamin, A. S. Abdullah, M. F. Zakaryia, S. Shuib, and S. Suhaimi, “Evolution of the leading-edge vortex over a flapping wing mechanism,” J. Mech. Eng. Sci., vol. 14, no. 2, pp. 6888–6894, Jun. 2020, doi: 10.15282/jmes.14.2.2020.27.0539.

J. D. Anderson, The fundamental of aerodynamics. New York: McGraw Hills, 2012.

D. M. Bushnell and K. J. Moore, “Drag Reduction in Nature,” Annu. Rev. Fluid Mech., vol. 23, no. 1, pp. 65–79, Jan. 1991, doi: 10.1146/annurev.fl.23.010191.000433.

V. Walter, “body form and swimming performance in the scombroid fishes,” Am. Zool., vol. 2, no. 2, pp. 143–149, May 1962, doi: 10.1093/icb/2.2.143.

Y. G. Aleyev, “Introduction,” in Nekton, Dordrecht: Springer Netherlands, 1977, pp. 1–18.

Q. Bone, “Buoyancy and Hydrodynamic Functions of Integument in the Castor Oil Fish, Ruvettus pretiosus (Pisces: Gempylidae),” Copeia, vol. 1972, no. 1, p. 78, Mar. 1972, doi: 10.2307/1442784.

V. V. Ovchinnikov, “[Turbulence of the boundary layer as one of the methods of reducing resistance in the movement of certain fishes].,” undefined, 1966, Accessed: Jun. 27, 2019. [Online]. Available: https://www.semanticscholar.org/paper/%5BTurbulence-of-the-boundary-layer-as-one-of-the-of-Ovchinnikov/8539c623fc8f350e924130bfa5b02d82e1ee940f.

P. W. Webb, “Hydrodynamics: Nonscombroid Fish,” Fish Physiol., vol. 7, pp. 189–237, Jan. 1978, doi: 10.1016/S1546-5098(08)60165-X.

E. G. Richardson, “The Physical Aspects Of Fish Locomotion,” J. Exp. Biol., vol. 13, no. 1, 1936.

D. A. Parry, “The Swimming of Whales and a Discussion of Gray’s Paradox,” J. Exp. Biol., vol. 26, no. 1, 1949.

C. C. Lindsey, “Form, Function, and Locomotory Habits in Fish,” 1978, pp. 1–100.

D. Gero, “The hydrodynamic aspects of fish propulsion. American Museum novitates; no. 1601,” 1952, Accessed: Jun. 27, 2019. [Online]. Available: http://digitallibrary.amnh.org/bitstream/handle/2246/4922/N1601.pdf?sequence=1.

J. Gray, “Studies in Animal Locomotion,” J. Exp. Biol., vol. 10, no. 1, 1933.

F. E. Fish, “The myth and reality of Gray’s paradox: implication of dolphin drag reduction for technology,” Bioinspir. Biomim., vol. 1, no. 2, pp. R17–R25, Jun. 2006, doi: 10.1088/1748-3182/1/2/R01.

P. Webb, “Hydrodynamics and Energetics of Fish Propulsion,” Bull. Fish. Res. Board Canada, Jan. 1975, Accessed: Jun. 27, 2019. [Online]. Available: https://scholarworks.umass.edu/fishpassage_journal_articles/569.

R. Von Mises, Theory of flight. Dover Publications, 1959.

F. E. Fish, “Influence of hydrodynamic design and propulsive mode on mammalian swimming energetics,” AUST. J. ZOOL, pp. 42--79, 1993, Accessed: Jun. 27, 2019. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.734.450.

Morton Gertler, “resistance experiments on a systematic series of streamlined bodies of revolution-for application to the design of high-speed submarines,” Washington, 1972. Accessed: Jun. 27, 2019. [Online]. Available: https://apps.dtic.mil/dtic/tr/fulltext/u2/a800144.pdf.

F. E. Fish and C. A. Hui, “Dolphin swimming–a review,” Mamm. Rev., vol. 21, no. 4, pp. 181–195, Dec. 1991, doi: 10.1111/j.1365-2907.1991.tb00292.x.

P. E. Purves, W H Dudok van Heel, and J. A, “Locomotion in dolphins Part I: hydrodynamic experiments on a model of the bottle-nosed dolphin,” Aquat. Mamm, vol. 34, pp. 1–8, 1975.

J. Rohr, M. I. Latz, S. Fallon, J. C. Nauen, and E. Hendricks, “Experimental approaches towards interpreting dolphin-stimulated bioluminescence.,” J. Exp. Biol., vol. 201, no. 9, 1998.

F. Fish and G. Lauder, “Not just going with the flow,” Am. Sci., vol. 1, 2013, Accessed: Aug. 22, 2019. [Online]. Available: http://www.people.fas.harvard.edu/~glauder/reprints_unzipped/Fish.Lauder.2013.pdf.

I. Nesteruk, G. Passoni, and A. Redaelli, “Shape of Aquatic Animals and Their Swimming Efficiency,” J. Mar. Biol., vol. 2014, pp. 1–9, Feb. 2014, doi: 10.1155/2014/470715.

Y. Zhang, H. Kihara, and K. Abe, “Three-dimensional simulation of a self-propelled fish-like body swimming in a channel,” Eng. Appl. Comput. Fluid Mech., vol. 12, no. 1, pp. 473–492, Jan. 2018, doi: 10.1080/19942060.2018.1453381.

B. P. Epps, P. Valdivia y Alvarado, K. Youcef-Toumi, and A. H. Techet, “Swimming performance of a biomimetic compliant fish-like robot,” Exp. Fluids, vol. 47, no. 6, pp. 927–939, Dec. 2009, doi: 10.1007/s00348-009-0684-8.

H. Liu and K. Kawachi, “A Numerical Study of Undulatory Swimming,” J. Comput. Phys., vol. 155, no. 2, pp. 223–247, Nov. 1999, doi: 10.1006/JCPH.1999.6341.

M. S. Triantafyllou, A. H. Techet, Q. Zhu, D. N. Beal, F. S. Hover, and D. K. P. Yue, “Vorticity Control in Fish-like Propulsion and Maneuvering,” Integr. Comp. Biol., vol. 42, no. 5, pp. 1026–1031, Nov. 2002, doi: 10.1093/icb/42.5.1026.

Q. Zhu, M. J. Wolfgang, D. K. P. Yue, and M. S. Triantafyllou, “Three-dimensional flow structures and vorticity control in fish-like swimming,” J. Fluid Mech., vol. 468, pp. 1–28, Oct. 2002, doi: 10.1017/S002211200200143X.

R. Bainbridge, “Problems of fish locomotion,” in Symp. Zool. SOC., 1961, pp. 13–32.

Paul W. Webb, “Form and Function in Fish Swimming,” Sci. Am. a Div. Nat. Am. Inc, vol. 251, no. 1, pp. 72–83, 1984, Accessed: Jul. 05, 2019. [Online]. Available: https://www.jstor.org/stable/24969414?seq=1#metadata_info_tab_contents.

C. M. Breder and C. M. Breder, “The locomotion of fishes,” Zool. Sci. Contrib. New York Zool. Soc., vol. 4, no. 5, pp. 159--297, 1926, Accessed: Jul. 05, 2019. [Online]. Available: https://www.biodiversitylibrary.org/part/203769.

Moe William Rosen, “water flow about a swimming fish,” California, 1959. Accessed: Jul. 05, 2019. [Online]. Available: https://apps.dtic.mil/dtic/tr/fulltext/u2/238395.pdf.

S. Taneda and Y. Tomonari, “An Experiment on the Flow around a Waving Plate,” J. Phys. Soc. Japan, vol. 36, no. 6, pp. 1683–1689, Jun. 1974, doi: 10.1143/JPSJ.36.1683.

T. Y. Wu and A. T. Chwang, “Extraction of Flow Energy by Fish and Birds in a Wavy Stream,” in Swimming and Flying in Nature, Boston, MA: Springer US, 1975, pp. 687–702.

M. Triantafyllou and G. Triantafyllou, “An Efficient Swimming Machine,” Sci. Am., vol. 272, no. 3, pp. 64–70, 1995.

A. H. Techet, F. S. Hover, and M. S. Triantafyllou, “Separation and Turbulence Control in Biomimetic Flows,” Flow, Turbul. Combust. (formerly Appl. Sci. Res., vol. 71, no. 1–4, pp. 105–118, 2003, doi: 10.1023/B:APPL.0000014923.28324.87.

L. Shen, X. Zhang, D. K. P. Yue, and M. S. Triantafyllou, “Turbulent flow over a flexible wall undergoing a streamwise travelling wave motion,” J. Fluid Mech., vol. 484, p. S0022112003004294, Jun. 2003, doi: 10.1017/S0022112003004294.

H. Hu, “Biologically Inspired Design of Autonomous Robotic Fish at Essex,” in Proceedings of the IEEE SMC UK-RI Chapter Conference, 2006, p. 6.

G. H. Yang et al., “Control and design of a 3 DOF fish robot ‘Ichtus,’” in 2011 IEEE International Conference on Robotics and Biomimetics, ROBIO 2011, 2011, pp. 2108–2113, doi: 10.1109/ROBIO.2011.6181603.

F. Bonnet et al., “Design of a modular robotic system that mimics small fish locomotion and body movements for ethological studies,” Int. J. Adv. Robot. Syst., vol. 14, no. 3, 2017, doi: 10.1177/1729881417706628.

J. Gao, S. Bi, J. Li, and C. Liu, “Design and experiments of robot fish propelled by pectoral fins,” in 2009 IEEE International Conference on Robotics and Biomimetics, ROBIO 2009, 2009, pp. 445–450, doi: 10.1109/ROBIO.2009.5420688.

S. Guo, T. Fukuda, N. Kato, and K. Oguro, “Development of underwater microrobot using ICPF actuator,” in Proceedings - IEEE International Conference on Robotics and Automation, 1998, vol. 2, pp. 1829–1834, doi: 10.1109/ROBOT.1998.677433.

Y. Luo, L. Wang, L. Green, K. Song, L. Wang, and R. Smith, “Advances of drag-reducing surface technologies in turbulence based on boundary layer control,” J. Hydrodyn., vol. 27, no. 4, pp. 473–487, Aug. 2015, doi: 10.1016/S1001-6058(15)60507-8.

J. Oyekan, B. Lu, and H. Hu, “A creative computing approach to 3D robotic simulator for water pollution monitoring,” 2013. Accessed: Sep. 06, 2019. [Online]. Available: http://www.sonyaibo.net/aboutaibo.htm.

W. Qing-Ping, S. Wang, X. Dong, L.-J. Shang, and M. Tan, “Design and Kinetic Analysis of a Biomimetic Underwater Vehicle with Two Undulating Long-fins,” Acta Autom. Sin., vol. 39, no. 8, pp. 1330–1338, Aug. 2013, doi: 10.1016/S1874-1029(13)60049-X.

J. Yu, M. Tan, S. Wang, and E. Chen, “Development of a biomimetic robotic fish and its control algorithm,” IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. 34, no. 4, pp. 1798–1810, Aug. 2004, doi: 10.1109/TSMCB.2004.831151.

W. Sagong, W. P. Jeon, and H. Choi, “Hydrodynamic characteristics of the sailfish (Istiophorus platypterus) and swordfish (Xiphias gladius) in gliding postures at their cruise speeds,” PLoS One, vol. 8, no. 12, Dec. 2013, doi: 10.1371/journal.pone.0081323.

W. Sagong, C. Kim, S. Choi, W. P. Jeon, and H. Choi, “Does the sailfish skin reduce the skin friction like the shark skin?,” in Physics of Fluids, 2008, vol. 20, no. 10, doi: 10.1063/1.3005861.

P. Domenici et al., “How sailfish use their bills to capture schooling prey,” Proc. R. Soc. B Biol. Sci., vol. 281, no. 1784, Apr. 2014, doi: 10.1098/rspb.2014.0444.

J. M. Zhan, Y. J. Gong, and T. Z. Li, “Gliding locomotion of manta rays, killer whales and swordfish near the water surface,” Sci. Rep., vol. 7, no. 1, Dec. 2017, doi: 10.1038/s41598-017-00399-y.

R. Von Mises, Theory of flight. Dover Publications, 1959.

I. Bartol, M. Gharib, P. Webb, and D. Weihs, “Body-induced vortical flows: a common mechanism for self-corrective trimming control in boxfishes,” J. Exp. Biol., no. 208, pp. 327–344, 2005, Accessed: Jul. 02, 2019. [Online]. Available: http://jeb.biologists.org/content/208/2/327.short.

J. A. Walker, “Does a rigid body limit maneuverability?,” J. Exp. Biol., vol. 203, no. 22, 2000.

M. S. Gordon, J. R. Hove, P. W. Webb, and D. Weihs, “Boxfishes as Unusually Well‐Controlled Autonomous Underwater Vehicles,” Physiol. Biochem. Zool., vol. 73, no. 6, pp. 663–671, Nov. 2000, doi: 10.1086/318098.

J. R. Hove, L. M. O’Bryan, M. S. Gordon, P. W. Webb, and D. Weihs, “Boxfishes (Teleostei: Ostraciidae) as a model system for fishes swimming with many fins: kinematics,” J. Exp. Biol., vol. 204, no. 8, 2001.

I. K. Bartol, M. S. Gordon, M. Gharib, J. R. Hove, P. W. Webb, and D. Weihs, “Flow Patterns Around the Carapaces of Rigid-bodied, Multi-propulsor Boxfishes (Teleostei: Ostraciidae),” Integr. Comp. Biol., vol. 42, no. 5, pp. 971–980, Nov. 2002, doi: 10.1093/icb/42.5.971.

I. K. Bartol, M. S. Gordon, P. Webb, D. Weihs, and M. Gharib, “Evidence of self-correcting spiral flows in swimming boxfishes,” Bioinspir. Biomim., vol. 3, no. 1, p. 014001, Mar. 2008, doi: 10.1088/1748-3182/3/1/014001.

S. Van Wassenbergh, K. van Manen, T. A. Marcroft, M. E. Alfaro, and E. J. Stamhuis, “Boxfish swimming paradox resolved: forces by the flow of water around the body promote manoeuvrability,” J. R. Soc. Interface, vol. 12, no. 103, pp. 20141146–20141146, Dec. 2014, doi: 10.1098/rsif.2014.1146.

A. Kozlov, H. Chowdhury, I. Mustary, B. Loganathan, and F. Alam, “Bio-Inspired Design: Aerodynamics of Boxfish,” Procedia Eng., vol. 105, pp. 323–328, Jan. 2015, doi: 10.1016/J.PROENG.2015.05.007.

R. Islam, M. Hussein, M. Zaid, and B. Loganathan, “Design of an energy efficient car by biomimicry of a boxfish,” Energy Procedia, vol. 160, pp. 40–44, Feb. 2019, doi: 10.1016/J.EGYPRO.2019.02.116.

T. G. Lang, “Hydrodynamic Analysis of Dolphin Fin Profiles,” Nature, vol. 209, no. 5028, pp. 1110–1111, Mar. 1966, doi: 10.1038/2091110a0.

C. P. van Dam, “Efficiency characteristics of crescent-shaped wings and caudal fins,” Nature, vol. 325, no. 6103, pp. 435–437, Jan. 1987, doi: 10.1038/325435a0.

V. V. Pavlov, “Wing design and morphology of the harbor porpoise dorsal fin,” J. Morphol., vol. 258, no. 3, pp. 284–295, Dec. 2003, doi: 10.1002/jmor.10135.

F. E. Fish, J. T. Beneski, and D. R. Ketten, “Examination of the three-dimensional geometry of cetacean flukes using computed tomography scans: Hydrodynamic implications,” Anat. Rec. Adv. Integr. Anat. Evol. Biol., vol. 290, no. 6, pp. 614–623, Jun. 2007, doi: 10.1002/ar.20546.

J. Z. Wu, A. D. Vakili, and J. M. Wu, “Review of the physics of enhancing vortex lift by unsteady excitation,” Prog. Aerosp. Sci., vol. 28, no. 2, pp. 73–131, Jan. 1991, doi: 10.1016/0376-0421(91)90001-K.

P. Watts and FE Fish, “The influence of passive, leading edge tubercles on wing performance,” in Proc. Twelfth Intl. Symp. Unmanned Untethered Submers. Technol, 2001, Accessed: Jul. 03, 2019. [Online]. Available: https://www.researchgate.net/profile/Frank_Fish4/publication/229002925_The_influence_of_passive_leading_edge_tubercles_on_wing_performance/links/0c9605233028f7aef1000000.pdf.

D. S. Miklosovic, M. M. Murray, L. E. Howle, and F. E. Fish, “Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers,” Phys. Fluids, vol. 16, no. 5, pp. L39–L42, May 2004, doi: 10.1063/1.1688341.

F. E. Fish, L. E. Howle, and M. M. Murray, “Hydrodynamic flow control in marine mammals,” Integr. Comp. Biol., vol. 48, no. 6, pp. 788–800, Apr. 2008, doi: 10.1093/icb/icn029.

E. A. van Nierop, S. Alben, and M. P. Brenner, “How Bumps on Whale Flippers Delay Stall: An Aerodynamic Model,” Phys. Rev. Lett., vol. 100, no. 5, p. 054502, Feb. 2008, doi: 10.1103/PhysRevLett.100.054502.

H. Johari, C. W. Henoch, D. Custodio, and A. Levshin, “Effects of Leading-Edge Protuberances on Airfoil Performance,” AIAA J., vol. 45, no. 11, pp. 2634–2642, Nov. 2007, doi: 10.2514/1.28497.

K. Hansen, R. Kelso, and C. Doolan, “Reduction of Flow Induced Tonal Noise Through Leading Edge Tubercle Modifications,” in 16th AIAA/CEAS Aeroacoustics Conference, Jun. 2010, doi: 10.2514/6.2010-3700.

K. L. Hansen, R. M. Kelso, and B. B. Dally, “Performance Variations of Leading-Edge Tubercles for Distinct Airfoil Profiles,” AIAA J., vol. 49, no. 1, pp. 185–194, Jan. 2011, doi: 10.2514/1.J050631.

F. E. Fish, P. W. Weber, M. M. Murray, and L. E. Howle, “The Tubercles on Humpback Whales’ Flippers: Application of Bio-Inspired Technology,” Integr. Comp. Biol., vol. 51, no. 1, pp. 203–213, Jul. 2011, doi: 10.1093/icb/icr016.

N. Rostamzadeh, R. M. Kelso, B. B. Dally, and K. L. Hansen, “The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics,” Phys. Fluids, vol. 25, no. 11, p. 117101, Nov. 2013, doi: 10.1063/1.4828703.

D. Custodio, C. W. Henoch, and H. Johari, “Aerodynamic Characteristics of Finite Span Wings with Leading-Edge Protuberances,” AIAA J., vol. 53, no. 7, pp. 1878–1893, Jul. 2015, doi: 10.2514/1.J053568.

M. M. Zhang, G. F. Wang, and J. Z. Xu, “Aerodynamic Control of Low-Reynolds-Number Airfoil with Leading-Edge Protuberances,” AIAA J., vol. 51, no. 8, pp. 1960–1971, Aug. 2013, doi: 10.2514/1.J052319.

M. D. Bolzon, R. M. Kelso, and M. Arjomandi, “Tubercles and Their Applications,” J. Aerosp. Eng., vol. 29, no. 1, p. 04015013, Jan. 2016, doi: 10.1061/(ASCE)AS.1943-5525.0000491.

P. S. Segre, S. M. Seakamela, M. A. Meÿer, K. P. Findlay, and J. A. Goldbogen, “A hydrodynamically active flipper-stroke in humpback whales,” Curr. Biol., vol. 27, no. 13, pp. R636–R637, Jul. 2017, doi: 10.1016/j.cub.2017.05.063.

P. S. Segre, S. M. Seakamela, M. A. Meÿer, K. P. Findlay, and J. A. Goldbogen, “A hydrodynamically active flipper-stroke in humpback whales,” Curr. Biol., vol. 27, no. 13, pp. R636–R637, Jul. 2017, doi: 10.1016/j.cub.2017.05.063.

D. Bechert and W. Reif, “On the Drag Reduction of the Shark Skin,” in 23rd Aerospace Sciences Meeting, Jan. 1985, doi: 10.2514/6.1985-546.

M. Walsh, “Turbulent boundary layer drag reduction using riblets,” in 20th Aerospace Sciences Meeting, Jan. 1982, doi: 10.2514/6.1982-169.

D. W. Bechert and M. Bartenwerfer, “The viscous flow on surfaces with longitudinal ribs,” J. Fluid Mech., vol. 206, pp. 105–129, Sep. 1989, doi: 10.1017/S0022112089002247.

D. W. Bechert, M. Bruse, W. Hage, J. G. T. Van Der Hoeven, and G. Hoppe, “Experiments on drag-reducing surfaces and their optimization with an adjustable geometry,” J. Fluid Mech., vol. 338, pp. 59–87, May 1997, doi: 10.1017/S0022112096004673.

B. Nugroho, N. Hutchins, and J. P. Monty, “Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness,” Int. J. Heat Fluid Flow, vol. 41, pp. 90–102, 2013, doi: 10.1016/j.ijheatfluidflow.2013.04.003.

g. Cui, c. Pan, d. Wu, q. Ye, and J. WANG, “Effect of drag reducing riblet surface on coherent structure in turbulent boundary layer,” Chinese J. Aeronaut., May 2019, doi: 10.1016/J.CJA.2019.04.023.

d. W. Bechert, m. Bruse, w. Hage, j. G. T. Van der hoeven, and G. HOPPE, “Experiments on drag-reducing surfaces and their optimization with an adjustable geometry,” J. Fluid Mech., vol. 338, pp. 59–87, May 1997, doi: 10.1017/S0022112096004673.

W. Li et al., “Turbulent drag reduction by spanwise traveling ribbed surface waves,” Eur. J. Mech. - B/Fluids, vol. 53, pp. 101–112, Sep. 2015, doi: 10.1016/J.EUROMECHFLU.2015.03.009.

S. Martin and B. Bhushan, “Modeling and optimization of shark-inspired riblet geometries for low drag applications,” J. Colloid Interface Sci., vol. 474, pp. 206–215, Jul. 2016, doi: 10.1016/J.JCIS.2016.04.019.

L. Tian, L. Ren, Z. Han, and S. Zhang, “Experiment about drag reduction of bionic non-smooth surface in low speed wind tunnel,” J. Bionic Eng., vol. 2, no. 1, pp. 15–24, Mar. 2005, doi: 10.1007/BF03399477.

D. Zhang, Y. Luo, X. Li, and H. Chen, “Numerical simulation and experimental study of drag-reducing surface of a real shark skin,” J. Hydrodyn. Ser. B, vol. 23, no. 2, pp. 204–211, Apr. 2011, doi: 10.1016/S1001-6058(10)60105-9.

A. W. Lang, P. Motta, P. Hidalgo, and M. Westcott, “Bristled shark skin: a microgeometry for boundary layer control?,” Bioinspir. Biomim., vol. 3, no. 4, p. 046005, Dec. 2008, doi: 10.1088/1748-3182/3/4/046005.

A. G. Domel, M. Saadat, J. C. Weaver, H. Haj-Hariri, K. Bertoldi, and G. V. Lauder, “Shark skin-inspired designs that improve aerodynamic performance,” J. R. Soc. Interface, vol. 15, no. 139, p. 20170828, Feb. 2018, doi: 10.1098/rsif.2017.0828.

F.-W. Patricia, D. Guzman, B. Iñigo, I. Urtzi, B. J. Maria, and S. Manu, “Morphological Characterization and Hydrodynamic Behavior of Shortfin Mako Shark (Isurus oxyrinchus) Dorsal Fin Denticles,” J. Bionic Eng., vol. 16, no. 4, pp. 730–741, Jul. 2019, doi: 10.1007/s42235-019-0059-7.

P. A. Fuaad and K. Arul Prakash, “Enhanced drag-reduction over superhydrophobic surfaces with sinusoidal textures: A DNS study,” Comput. Fluids, vol. 181, pp. 208–223, Mar. 2019, doi: 10.1016/J.COMPFLUID.2019.01.022.

C. Zhang and K. Saurav Bijay, “Investigation on drag reduction performance of aero engine blade with micro-texture,” Aerosp. Sci. Technol., vol. 72, pp. 380–396, Jan. 2018, doi: 10.1016/J.AST.2017.11.007.

Y. Luo, D. Zhang, and Y. Liu, “recent drag reduction developments derived from different biological functional surfaces: a review,” J. Mech. Med. Biol., vol. 16, no. 02, p. 1630001, Mar. 2016, doi: 10.1142/S0219519416300015.

S. Nakao, “Application of V Shape Riblets to Pipe Flows,” J. Fluids Eng., vol. 113, no. 4, p. 587, Dec. 1991, doi: 10.1115/1.2926519.

M. Nili-Ahmadabadi, O. Nematollahi, and K. C. Kim, “Effects of coarse riblets on air flow structures over a slender delta wing using particle image velocimetry,” Chinese J. Aeronaut., vol. 32, no. 6, pp. 1367–1379, Jun. 2019, doi: 10.1016/J.CJA.2019.03.019.

N. West, K. Sammut, and Y. Tang, “Material selection and manufacturing of riblets for drag reduction: An updated review,” Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 232, no. 7, pp. 610–622, Jul. 2018, doi: 10.1177/1464420716641452.

H. H. Zhang, S. S. Nunayon, and A. C. K. Lai, “Experimental study on deposition enhancement of ultrafine particles in a duct flow by riblets,” Appl. Therm. Eng., vol. 147, pp. 886–894, Jan. 2019, doi: 10.1016/J.APPLTHERMALENG.2018.10.112.

M. J. Walsh, W. L. Sellers, and C. B. McGinley, “Riblet drag reduction at flight conditions,” in AIAA 6th Applied Aerodynamics Conference, 1988, 1988, pp. 629–638, doi: 10.2514/6.1988-2554.

J. Anderson, Introduction to Flight.pdf, Seventh. USA: McGraw-Hill Education, 2001.

I. Hucho, “Aerodynamics of Road Vehicles,” Annu. Rev. Fluid Mech., vol. 25, no. 1, pp. 485–537, 1993, doi: 10.1146/annurev.fluid.25.1.485.

S. K. Arabacı and M. Arabacı, “aerodynamic characteristics of buses inspired by beluga whales in cfd and wind tunnel,” 2018. Accessed: Sep. 06, 2019. [Online]. Available: https://www.researchgate.net/publication/333311236.

C. Chhavi and T. Selvakumaran, “Adaptation of Sailfish topology in fuselage design and performance comparison with modern fuselage,” in IEEE Aerospace Conference Proceedings, Jun. 2018, vol. 2018-March, pp. 1–8, doi: 10.1109/AERO.2018.8396431.

J. Patten, P. Eng Brian McAuliffe, W. Mayda, and P. Eng Bernard Tanguay, “Review of Aerodynamic Drag Reduction Devices for Heavy Trucks and Buses,” 2012.

D. S. Chawla, “The car designer who turned a sailfish into a supercar,” BBC News, 2014.

B. Sharfman, “Mercedes and the boxfish | The Scientist Magazine®,” The Scientist, 2006.

J. Buehler, “Mercedes-Benz Bionic car: Boxfish stability and agility paradox finally solved.,” Slate, 2015.

H. Chowdhury, R. Islam, M. Hussein, M. Zaid, B. Loganathan, and F. Alam, “Design of an energy efficient car by biomimicry of a boxfish,” in Energy Procedia, 2019, vol. 160, pp. 40–44, doi: 10.1016/j.egypro.2019.02.116.

B. Bhushan and Y. C. Jung, “Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces,” Nanotechnology, vol. 17, no. 11, pp. 2758–2772, Jun. 2006, doi: 10.1088/0957-4484/17/11/008.

L. Feng et al., “Super-Hydrophobic Surfaces: From Natural to Artificial,” Adv. Mater., vol. 14, no. 24, pp. 1857–1860, Dec. 2002, doi: 10.1002/adma.200290020.

X. W. Song, G. G. Zhang, Y. Wang, and S. G. Hu, “Use of bionic inspired surfaces for aerodynamic drag reduction on motor vehicle body panels,” J. Zhejiang Univ. Sci. A, vol. 12, no. 7, pp. 543–551, Jul. 2011, doi: 10.1631/jzus.A1000505.

X. W. Song, G. G. Zhang, Y. Wang, and S. G. Hu, “Aerodynamic drag reduction analysis of vehicle body with bionic non-smooth surfaces,” Journal of Hunan University Natural Sciences2, 2010. https://www.researchgate.net/publication/286869248_Aerodynamic_drag_reduction_analysis_of_vehicle_body_with_bionic_non-smooth_surfaces (accessed Sep. 08, 2019).

R. I. Bourisli and A. A. Al-Sahhaf, “CFD modeling of turbulent boundary layer flow in passive drag-reducing applications,” in WIT Transactions on Engineering Sciences, 2008, vol. 59, pp. 79–90, doi: 10.2495/AFM080081.

O. Chanute, Progress in flying machines. Dover Publications, 1997.

J. D. Jacob, “On The Fluid Dynamics of Adaptive Airfoils,” ASME Int. Eng. Congr. Expo., 1998.

W. Shyy et al., “Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications,” Acta Mech. Sin. Xuebao, vol. 24, no. 4, pp. 351–373, 2008, doi: 10.1007/s10409-008-0164-z.

T. Bachmann, J. Emmerlich, W. Baumgartner, J. M. Schneider, and H. Wagner, “Flexural stiffness of feather shafts: geometry rules over material properties,” J. Exp. Biol., vol. 215, no. 3, pp. 405–415, 2012, doi: 10.1242/jeb.059451.

R. Bonser and P. Purslow, “The Young’s modulus of feather keratin,” J. Exp. Biol., vol. 198, no. 4, 1995.

G. D. Macleod, “Mechanical Properties of Contour Feathers,” J. exp. Biol, vol. 87, pp. 65–71, 1980.

P. P. Purslow and J. F. V. Vincent, “Mechanical Properties of primary feathers from the pigeon,” J. Exp. Biol., vol. 72, pp. 251–260, 1978.

V. A. Tucker, “Body drag, feather drag and interference drag of the mounting strut in a peregrine falcon,falco peregrinus,” J. Exp. Biol., vol. 149, no. 1, 1990, Accessed: Aug. 12, 2019. [Online]. Available: https://jeb.biologists.org/content/149/1/449.

C. J. Pennycuick, “the mechanics of bird migration,” Int. J. Avian Sci., vol. 111, no. 4, pp. 525–556, Apr. 1969, doi: 10.1111/j.1474-919X.1969.tb02566.x.

V. A. Tucker, “Bird Metabolism During Flight: Evaluation of a Theory,” J. Exp. Biol., vol. 58, no. 3, 1973.

C. J. Pennycuick, H. H. Obrecht, and M. R. Fuller, “Empirical Estimates of Body Drag of Large Waterfowl and Raptors,” J. Exp. Biol., vol. 135, no. 1, 1988.

V. A. Tucker and C. Heine, “aerodynamics of gliding flight in a harris’ hawk, parabuteo unicinctus,” J. Exp. Biol., vol. 149, no. 1, 1990.

Anders Hedeenstrom and Felix Liechtifelix Liechti, “Field estimates of body drag coefficient on the basis of dives in passerine birds,” J. Exp. Biol., no. 204, pp. 1167–1175, 2001, Accessed: Aug. 12, 2019. [Online]. Available: https://pdfs.semanticscholar.org/05c3/b12a81057bd22e754413fc1a6963d7cf263e.pdf.

V. A. Tucker, “Measuring Aerodynamic Interference Drag Between a Bird Body and the Mounting Strut of a drag Balance,” J. Exp. Biol., vol. 154, no. 1, 1990.

V. A. Tucker, “Gliding flight: drag and torque of a hawk and a falcon with straight and turned heads, and a lower value for the parasite drag coefficient,” J. Exp. Biol., vol. 203, no. 24, 2000.

J. Lovvorn, G. A. Liggins, M. H. Borstad, S. M. Calisal, and J. Mikkelsen, “Hydrodynamic drag of diving birds: effects of body size, body shape and feathers at steady speeds,” J. Exp. Biol., vol. 204, no. 9, 2001.

W. J. Maybury and J. M. V. Rayner, “The avian tail reduces body parasite drag by controlling flow separation and vortex shedding,” Proc. R. Soc. London. Ser. B Biol. Sci., vol. 268, no. 1474, pp. 1405–1410, Jul. 2001, doi: 10.1098/rspb.2001.1635.

J. M. V. Rayner and W. J. Maybury, “The Drag Paradox: Measurements of Flight Performance and Body Drag in Flying Birds,” in Avian Migration, Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 543–562.

W. J. Maybury, “The aerodynamics of bird bodies,” UNIVERSITY OF BRISTOL, 2000.

B. W. Tobalske, J. W. D. Hearn, and D. R. Warrick, “Aerodynamics of intermittent bounds in flying birds,” Anim. Locomot., pp. 401–411, 2010, doi: 10.1007/978-3-642-11633-9_31.

B. W. Tobalske, “Biomechanics of bird flight,” J. Exp. Biol., vol. 210, no. 18, pp. 3135–3146, Sep. 2007, doi: 10.1242/JEB.000273.

J. Håkansson, L. Jakobsen, A. Hedenström, and L. C. Johansson, “Body lift, drag and power are relatively higher in large-eared than in small-eared bat species,” J. R. Soc. Interface, vol. 14, no. 135, p. 20170455, Oct. 2017, doi: 10.1098/rsif.2017.0455.

A. L. R. Thomas, “On the Tails of Birds,” Bioscience, vol. 47, no. 4, pp. 215–225, Apr. 1997, doi: 10.2307/1313075.

J. M. Smith, “The Importance of the Nervous System in the Evolution of Animal Flight,” Evolution (N. Y)., vol. 6, no. 1, p. 127, Mar. 1952, doi: 10.2307/2405510.

V. A. Tucker, “Pitching Equilibrium, Wing Span and Tail Span in a Gliding Harris’ Hawk, Parabuteo Unicinctus,” J. Exp. Biol., vol. 165, no. 1, 1992, Accessed: Aug. 14, 2019. [Online]. Available: https://jeb.biologists.org/content/165/1/21.

A. L. R. Thomas, “The Aerodynamic Costs of Asymmetry in the Wings and Tail of Birds: Asymmetric Birds can’t Fly round Tight Corners,” 1993. Accessed: Aug. 15, 2019. [Online]. Available: https://www-jstor-org.uproxy.library.dc-uoit.ca/stable/pdf/49894.pdf?refreqid=excelsior%3A765639442334971143396c8759e677cc.

A. L. R. Thomas, “On the aerodynamics of birds’ tails,” Phil. Trans. R. Soc. B, vol. 340, no. 1294, p. 361, 1993.

A. Balmford, A. L. R. Thomas, and I. L. Jones, “Aerodynamics and the evolution of long tails in birds,” Nature, vol. 361, no. 6413, pp. 628–631, Feb. 1993, doi: 10.1038/361628a0.

A. L. R. Thomas and A. Balmford, “How Natural Selection Shapes Birds’ Tails,” The American Naturalist, vol. 146. The University of Chicago PressThe American Society of Naturalists, pp. 848–868, 1995, doi: 10.2307/2463100.

M. R. Evans, M. Rosén, K. J. Park, and A. Hedenström, “How do birds’ tails work? Delta–wing theory fails to predict tail shape during flight,” Proc. R. Soc. London. Ser. B Biol. Sci., vol. 269, no. 1495, pp. 1053–1057, May 2002, doi: 10.1098/rspb.2001.1901.

M. R. Evans, “Birds’ Tails Do Act like Delta Wings but Delta-Wing Theory Does Not Always Predict the,” vol. 270, no. 1522, pp. 1379–1385, 2003, doi: 10.1098/rspb.2003.2373.

G. Sachs, “Tail effects on yaw stability in birds,” J. Theor. Biol., vol. 249, pp. 464–472, 2007, doi: 10.1016/j.jtbi.2007.07.014.

D. Alexander, Nature’s flyers: birds, insects, and the biomechanics of flight. 2002.

R. H. J. Brown, “the flight of birds,” Biol. Rev., vol. 38, no. 4, pp. 460–489, Nov. 1963, doi: 10.1111/j.1469-185X.1963.tb00790.x.

CJ Pennycuick -, “Mechanics of flight,” Avian Biol., pp. 1–73, 1975, Accessed: Aug. 15, 2019. [Online]. Available: https://ci.nii.ac.jp/naid/10004433287/.

U. M. Norberg, Vertebrate Flight, vol. 27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990.

C. J. Clark, “The Evolution of Tail Shape in Hummingbirds,” Auk, vol. 127, no. 1, pp. 44–56, Jan. 2010, doi: 10.1525/auk.2009.09073.

J. D. Gardiner, G. Dimitriadis, J. R. Codd, and R. L. Nudds, “A Potential Role for Bat Tail Membranes in Flight Control,” PLoS One, vol. 6, no. 3, p. e18214, Mar. 2011, doi: 10.1371/journal.pone.0018214.

P. Matyjasiak, J. Matyjasiak, F. de Lope, and A. P. Møller, “Vane emargination of outer tail feathers improves flight manoeuvrability in streamerless hirundines, Hirundinidae,” Proc. R. Soc. London. Ser. B Biol. Sci., vol. 271, no. 1550, pp. 1831–1838, Sep. 2004, doi: 10.1098/rspb.2004.2812.

A. P. Møller, A. Barbosa, J. J. Cuervo, F. de Lope, S. Merino, and N. Saino, “Sexual selection and tail streamers in the barn swallow,” Proc. R. Soc. London. Ser. B Biol. Sci., vol. 265, no. 1394, pp. 409–414, Mar. 1998, doi: 10.1098/rspb.1998.0309.

B. G. Newman, “Soaring and gliding flight of the {B}lack {V}ulture,” J. Exp. Biol., vol. 35, pp. 280–285, 1958, [Online]. Available: http://jeb.biologists.org/cgi/content/abstract/35/2/280.

R. . Graham, “Safety Devices in Wing Birds,” J. R. Aeronaut. Soc., vol. 36, no. 253, pp. 24–58, 1932, doi: 10.1017/S0368393100111708.

W. MULler and G. Patone, “Air transmissivity of feathers,” J. Exp. Biol., vol. 201 (Pt 18, pp. 2591–9, 1998, doi: 10.1098/rspb.2014.2864.

A. R. Ennos, J. R. E. Hickson, and A. Roberts, “Functional morphology of the vanes of the flight feathers of the pigeon Columba livia,” J. Exp. Biol., vol. 198, pp. 1219–1228, 1995, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/9319072.

K. E. Crandell and B. W. Tobalske, “Aerodynamics of tip-reversal upstroke in a revolving pigeon wing.,” J. Exp. Biol., vol. 214, no. Pt 11, pp. 1867–73, Jun. 2011, doi: 10.1242/jeb.051342.

Tucker, “Gliding Birds: The Effect of Variable Wing Span,” J. Exp. Biol., vol. 133, no. 1, 1987.

P. C. Withers, “An aerodynamic analysis of bird wings as fixed aerofoils,” J. Exp. Biol., vol. 90, pp. 143–162, 1981.

A. M. Berg, A. A. Biewener, and C. P. Ellington, “Wing and body kinematics of takeoff and landing flight in the pigeon (Columba livia).,” J. Exp. Biol., vol. 213, no. Pt 10, pp. 1651–8, May 2010, doi: 10.1242/jeb.038109.

V. Tucker, “Drag reduction by wing tip slots in a gliding Harris’ hawk, Parabuteo unicinctus,” J. Exp. Biol., vol. 198, no. Pt 3, pp. 775–81, 1995, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/9318544.

Tucker, “Drag reduction by wing tip slots in a gliding Harris’ hawk, Parabuteo unicinctus,” J. Exp. Biol., vol. 198, no. 3, 1995.

M. Fluck and C. Crawford, “A lifting line model to investigate the influence of tip feathers on wing performance,” Bioinspiration and Biomimetics, vol. 9, no. 4, p. 46017, 2014, doi: 10.1088/1748-3182/9/4/046017.

W. P. Henderson and B. J. Holmes, “Induced Drag - Historical Perspective,” Sep. 1989, doi: 10.4271/892341.

M. Munk, “The minimum induced drag of aerofoils.,” 1923. [Online]. Available: https://ntrs.nasa.gov/search.jsp?R=19800006779%5Cnhttp://www.engbrasil.eng.br/index_arquivos/art73.pdf.

C. D. Cone, “The Theory of Induced Lift and Minimum Induced Drag of Non-planar Lifting Systems.,” Nasa Tr R-139, 1962.

K. Ilan, M. John, and S. Stephen C., “Highly Nonplanar Lifting Systems,” 1995. Accessed: May 24, 2018. [Online]. Available: http://aero.stanford.edu/reports/nonplanarwings/nonplanarwings.html.

S. V. Lyapunov, “Nonplanar wings with minimum induced drag,” Fluid Dyn., vol. 28, no. 2, pp. 238–243, 1993, doi: 10.1007/BF01051213.

H. Zimmer, “The Aerodynamic Optimization of Wings at Subsonic Speeds and the Influence of Wingtip Design. Thesis,” May 1987. Accessed: May 24, 2018. [Online]. Available: https://ntrs.nasa.gov/search.jsp?R=19870013194.

M. Degen, A. R. Johnson, and W. E. Thompson, “Aerodynamic characteristics of ring wings and ringwing-body combinations,” 1957.

J. E. Hackett, “Vortex drag reduction by aft-mounted diffusing vanes,” ICAS, vol. 80, 1980.

L. U. Roche and S. Palffy, “Wing-grid, a novel device for reduction of induced drag on wings,” in ICAS 20thCongress, 1996, pp. 2303–2309.

J. J. Spillman, “The use of wing tip sails to reduce vortex drag,” Aeronaut. J., vol. 82, no. 813, pp. 387–395, 1978, doi: 10.1017/s0001924000091168.

G. W. Webber and T. Dansby, “Wing tip devices for energy conversion and other purposes,” Can. Aeronaut. Sp. J., vol. 29, no. 2, pp. 105–120, 1983.

V. A. Tucker and G. C. Parrott, “Aerodynamics of gliding flight in a falcon and other birds,” J. Exp. Biol., vol. 52, no. 2, pp. 345–367, 1970, [Online]. Available: http://jeb.biologists.org/content/52/2/345.short.

C. J. Pennycuick, “A Wind-Tunnel Study of Gliding Flight in the Pigeon Columba Livia,” J. Exp. Biol., vol. 49, no. 3, 1968, Accessed: Aug. 15, 2019. [Online]. Available: https://jeb.biologists.org/content/49/3/509.

V. A. Tucker, “Gliding Birds: Descending Flight of the Whitebacked Vulture, Gyps Africanus,” J. Exp. Biol., vol. 140, no. 1, 1988.

A. Balmford, I. L. Jones, and A. L. R. Thomas, “On Avian Asymmetry: Evidence of Natural Selection for Symmetrical Tails and Wings in,” 1993. Accessed: Aug. 15, 2019. [Online]. Available: https://www-jstor-org.uproxy.library.dc-uoit.ca/stable/pdf/49887.pdf?refreqid=excelsior%3A5fdf6614d1ee97116e78f10094616bc5.

C. P. Ellington, C. van den Berg, A. P. Willmott, and A. L. R. Thomas, “Leading-edge vortices in insect flight,” Nature, vol. 384, no. 6610, pp. 626–630, Dec. 1996, doi: 10.1038/384626a0.

M. Rosén and A. Hedenström, “Gliding flight in a jackdaw: a wind tunnel study.,” J. Exp. Biol., vol. 204, no. Pt 6, pp. 1153–66, Mar. 2001, Accessed: Aug. 15, 2019. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/11222131.

D. Lentink et al., “How swifts control their glide performance with morphing wings,” Nature, vol. 446, no. 7139, pp. 1082–1085, Apr. 2007, doi: 10.1038/nature05733.

D. Lentink and R. de Kat, “Gliding Swifts Attain Laminar Flow over Rough Wings,” PLoS One, vol. 9, no. 6, p. e99901, Jun. 2014, doi: 10.1371/journal.pone.0099901.

M. R. Voloojerdi and M. Mani, “Aerodynamic Characteristics of Conventional and Innovative High Lift Swept Wings,” J. Bionic Eng., vol. 16, no. 3, pp. 432–441, May 2019, doi: 10.1007/s42235-019-0035-2.

G. Sachs, “Aerodynamic yawing moment characteristics of bird wings,” J. Theor. Biol., vol. 234, pp. 471–478, 2005, doi: 10.1016/j.jtbi.2004.12.001.

P. Krus and P. Krus, “Natural methods for flight stability in birds,” in 1997 World Aviation Congress, Oct. 1997, doi: 10.2514/6.1997-5653.

G. Sachs, “Yaw stability in gliding birds,” J. Ornithol., vol. 146, no. 3, pp. 191–199, Jul. 2005, doi: 10.1007/s10336-005-0078-5.

M. A. Moelyadi and G. Sachs, Simulation of Dynamic Yaw Stability Derivatives of a Bird Using CFD. 2007.

W. Liebe, “Der Auftrieb am Tragugel: Entstehung und Zusammenbruch,” Aerokurier, vol. 12, pp. 1520–3, 1979.

R. Griffin, “Design of a passive flow control device derived from bird wing aerodynamics,” Mechanical Engineering, 2012.

K. Kernstine, C. Moore, A. Cutler, and R. Mittal, “Initial Characterization of Self-Activated Movable Flaps, "Pop-Up Feathers",” in 46th AIAA Aerospace Sciences Meeting and Exhibit, Jan. 2008, doi: 10.2514/6.2008-369.

J. U. Schluter, “Lift Enhancement at Low Reynolds Numbers Using Self-Activated Movable Flaps,” J. Aircr., vol. 47, no. 1, pp. 348–351, Jan. 2010, doi: 10.2514/1.46425.

R. Barakat, “Incompressible Flow Around Porous Two-Dimensional Sails and Wings,” J. Math. Phys., vol. 47, no. 1–4, pp. 327–349, Apr. 1968, doi: 10.1002/sapm1968471327.

C. S. Ventres and R. Barakat, “Aerodynamics of Airfoils with Porous Trailing Edges,” Aeronaut. Q., vol. 30, no. 2, pp. 387–399, May 1979, doi: 10.1017/S000192590000860X.

G. . Savu and 0. Trifu, “Porous Airfoils in Transonic Flow,” AIAA J., vol. 22, no. 7, pp. 989–991, Jul. 1984, doi: 10.2514/3.48535.

H. D. Gruschka, I. U. Borchers, and J. G. Coble, “Aerodynamic Noise produced by a Gliding Owl,” Nature, vol. 233, no. 5319, pp. 409–411, Oct. 1971, doi: 10.1038/233409a0.

G. Iosilevskii, “Aerodynamics of permeable membrane wings,” Eur. J. Mech. - B/Fluids, vol. 30, no. 5, pp. 534–542, Sep. 2011, doi: 10.1016/J.EUROMECHFLU.2011.05.003.

G. Iosilevskii, “Aerodynamics of permeable membrane wings. Part 2: Seepage drag,” Eur. J. Mech. - B/Fluids, vol. 39, pp. 32–41, May 2013, doi: 10.1016/J.EUROMECHFLU.2012.11.004.

D. Venkataraman and A. Bottaro, “Numerical modeling of flow control on a symmetric aerofoil via a porous, compliant coating,” Phys. Fluids, vol. 24, no. 9, p. 093601, Sep. 2012, doi: 10.1063/1.4748962.

T. Bachmann and A. Winzen, “OWL INSPIRED SILENT FLIGHT,” 2014, pp. 695–717.

T. Geyer, E. Sarradj, and C. Fritzsche, “Nature-Inspired Porous Airfoils for Sound Reduction,” Springer, Berlin, Heidelberg, 2012, pp. 355–370.

A. Winzen, M. Klaas, and W. Schröder, “High-Speed Particle Image Velocimetry and Force Measurements of Bio-Inspired Surfaces,” J. Aircr., vol. 52, no. 2, pp. 471–485, Mar. 2015, doi: 10.2514/1.C032742.

A. Winzen, M. Klaas, and W. Schröder, “High-speed PIV measurements of the near-wall flow field over hairy surfaces,” Exp. Fluids, vol. 54, no. 3, p. 1472, Mar. 2013, doi: 10.1007/s00348-013-1472-z.

H. Wagner, M. Weger, M. Klaas, and W. Schröder, “Features of owl wings that promote silent flight,” Interface Focus, vol. 7, no. 1, p. 20160078, Feb. 2017, doi: 10.1098/rsfs.2016.0078.

M. Aldheeb, W. Asrar, E. Sulaeman, and A. A. Omar, “Aerodynamics of porous airfoils and wings,” Acta Mech., vol. 229, no. 9, pp. 3915–3933, Sep. 2018, doi: 10.1007/s00707-018-2203-6.

K. Malik et al., “Effects of Bio-Inspired Surface Roughness on a Swept Back Tapered NACA 4412 Wing,” J. Aerosp. Technol. Manag., vol. 11, 2019, doi: 10.5028/jatm.v11.1021.

R. T. Whitcomb, “A design approach and selected wind tunnel results at high subsonic speeds for wing-tip mounted winglets,” Nasa Tn D-8260, no. July, pp. 1–33, 1976, [Online]. Available: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19760019075.pdf.

Tucker, “Gliding birds: reduction of induced drag by wing tip slots between the primary feathers,” J. Exp. Biol., vol. 180, no. 1, 1993.

J. P. Swaddle and R. Lockwood, “Wingtip shape and flight performance in the European starling Sturnus vulgaris,” Ibis (Lond. 1859)., vol. 145, no. 3, pp. 457–464, 2003, doi: 10.1046/j.1474-919X.2003.00189.x.

G. Sachs and M. A. Moelyadi, “Effect of slotted wing tips on yawing moment characteristics,” J. Theor. Biol., vol. 239, no. 1, pp. 93–100, 2006, doi: 10.1016/j.jtbi.2005.07.016.

J. E. Guerrero, D. Maestro, and A. Bottaro, “Biomimetic spiroid winglets for lift and drag control,” Comptes Rendus - Mec., vol. 340, no. 1–2, pp. 67–80, 2012, doi: 10.1016/j.crme.2011.11.007.

J. E. Guerrero and D. Maestro, “Biomimetic spiroid winglets for lift and drag control,” Comptes Rendus Mécanique, vol. 340, no. 1–2, pp. 67–80, Jan. 2012, doi: 10.1016/J.CRME.2011.11.007.

M. Lynch, B. Mandadzhiev, and A. Wissa, “Bioinspired wingtip devices: a pathway to improve aerodynamic performance during low Reynolds number flight,” Bioinspir. Biomim., vol. 13, no. 3, p. 036003, Mar. 2018, doi: 10.1088/1748-3190/aaac53.

N. Siddiqui, M. Aldeeb, W. Asrar, and E. Sulaeman, “Experimental investigation of a new spiral wingtip,” Int. J. Aviat. Aeronaut. Aerosp., vol. 5, no. 2, Mar. 2018, doi: 10.15394/ijaaa.2018.1213.

A. Wissa, A. K. Han, and M. R. Cutkosky, “Wings of a feather stick together: Morphing wings with barbule-inspired latching,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 9222, pp. 123–134, doi: 10.1007/978-3-319-22979-9_13.

S. J. Portugal et al., “Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight,” Nature, vol. 505, no. 7483, pp. 399–402, Jan. 2014, doi: 10.1038/nature12939.

H. Chen, F. Rao, X. Shang, D. Zhang, and I. Hagiwara, “Biomimetic Drag Reduction Study on Herringbone Riblets of Bird Feather,” J. Bionic Eng., vol. 10, no. 3, pp. 341–349, Sep. 2013, doi: 10.1016/S1672-6529(13)60229-2.

T. McKeag, “Auspicious Forms: Designing the Sanyo Shinkansen 500-Series Bullet Train,” Zygote Q., no. 2, pp. 12–36, 2012.

AskNature, “Shinkansen Train,” AskNature, 2017. https://asknature.org/idea/shinkansen-train/ (accessed Sep. 08, 2019).

B. Wiltgen and A. K. Goel, “Functional Model Simulation for Evaluating Design Concepts,” 2016. Accessed: Sep. 08, 2019. [Online]. Available: www.asknature.org.

M. Hildebrand, “Motions of the Running Cheetah and Horse,” J. Mammal., vol. 40, no. 4, p. 481, Nov. 1959, doi: 10.2307/1376265.

Blaine Friedlander, “When tiger beetles chase prey at high speeds they go blind temporarily, Cornell entomologists learn | Cornell Chronicle,” Cornell Chronicle, 1998. http://news.cornell.edu/stories/1998/01/tiger-beetles-go-blind-chasing-prey-high-speeds (accessed Aug. 19, 2019).

A. M. Wilson, J. C. Lowe, K. Roskilly, P. E. Hudson, K. A. Golabek, and J. W. McNutt, “Locomotion dynamics of hunting in wild cheetahs,” Nature, vol. 498, no. 7453, pp. 185–189, Jun. 2013, doi: 10.1038/nature12295.

E. Muybridge, Animals in motion. Dover Publications, 1957.

M. Hildebrand, “Further Studies on Locomotion of the Cheetah,” J. Mammal., vol. 42, no. 1, p. 84, Feb. 1961, doi: 10.2307/1377246.

P. E. Hudson, S. A. Corr, R. C. Payne-Davis, S. N. Clancy, E. Lane, and A. M. Wilson, “Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb,” J. Anat., vol. 218, no. 4, pp. 363–374, Apr. 2011, doi: 10.1111/j.1469-7580.2010.01310.x.

A. Patel, “Understanding the Motions of the Cheetah Tail Using Robotics,” UNIVERSITY OF CAPE TOWN , 2014.

A. Patel, E. Boje, C. Fisher, L. Louis, and E. Lane, “Quasi-steady state aerodynamics of the cheetah tail.,” Biol. Open, vol. 5, no. 8, pp. 1072–6, Aug. 2016, doi: 10.1242/bio.018457.

A. J. Spence, A. S. Thurman, M. J. Maher, and A. M. Wilson, “Speed, pacing strategy and aerodynamic drafting in Thoroughbred horse racing,” Biol. Lett., vol. 8, no. 4, p. 678, Aug. 2012, doi: 10.1098/RSBL.2011.1120.

Anonymous, “Horse Racing Position Cuts Drag by up to 66%,” Australasian Science, p. 11, Feb. 2015.

Anne Marie Helmenstine, “How Fast Can a Cheetah Run?,” ThoughtCo., 2019. https://www.thoughtco.com/how-fast-can-a-cheetah-run-4587031 (accessed May 25, 2021).

S. Peng, X. Liu, Z. Li, and F. Jiang, “Application of Bionics of Tiger Beetle to Aerodynamic Optimization of MIRA Fastback Model,” in International Conference on Computer Science and Application Engineering, 2017, pp. 1–10.

S. O. Kang et al., “actively translating a rear diffuser device for the aerodynamic drag reduction of a passenger car,” Int. J. Automot. Technol., vol. 13, no. 4, pp. 583–592, 2012.

T. Heinemann, M. Springer, H. Lienhart, S. Kniesburges, C. Othmer, and S. Becker, “Active flow control on a 1:4 car model,” Exp. Fluids, vol. 55, no. 5, pp. 1–11, May 2014, doi: 10.1007/s00348-014-1738-0.

R. Mestiri, A. Ahmed-Bensoltane, L. Keirsbulck, F. Aloui, and L. Labraga, “Active flow control at the rear end of a generic car model using steady blowing,” J. Appl. Fluid Mech., vol. 7, no. 4, pp. 565–571, 2014, doi: 10.36884/jafm.7.04.21752.

M. Rouméas, P. Gilliéron, and A. Kourta, “Analysis and control of the near-wake flow over a square-back geometry,” Comput. Fluids, vol. 38, no. 1, pp. 60–70, Jan. 2009, doi: 10.1016/j.compfluid.2008.01.009.

E. Wassen and F. Thiele, “Drag reduction for a generic car model using steady blowing,” in 4th AIAA Flow Control Conference, 2008, doi: 10.2514/6.2008-3771.

D. Krentel, R. Muminovic, A. Brunn, W. Nitsche, and R. King, “Application of active flow control on generic 3d car models,” Notes Numer. Fluid Mech. Multidiscip. Des., vol. 108, pp. 223–239, 2010, doi: 10.1007/978-3-642-11735-0_15.

E. Wassen, S. Eichinger, and F. Thiele, “Simulation of active drag reduction for a square-back vehicle,” Notes Numer. Fluid Mech. Multidiscip. Des., vol. 108, pp. 241–255, 2010, doi: 10.1007/978-3-642-11735-0_16.

S. Aubrun, J. McNally, F. Alvi, and A. Kourta, “Separation flow control on a generic ground vehicle using steady microjet arrays,” Exp. Fluids, vol. 51, no. 5, pp. 1177–1187, Nov. 2011, doi: 10.1007/s00348-011-1132-0.

J. McNally et al., “Drag reduction on a flat-back ground vehicle with active flow control,” J. Wind Eng. Ind. Aerodyn., vol. 145, pp. 292–303, Oct. 2015, doi: 10.1016/j.jweia.2015.03.006.

H. Park, J. H. Cho, J. Lee, D. H. Lee, and K. H. Kim, “Aerodynamic Drag Reduction of Ahmed Model Using Synthetic Jet Array,” SAE Int. J. Passeng. Cars - Mech. Syst., vol. 6, no. 1, pp. 1–6, Mar. 2013, doi: 10.4271/2013-01-0095.

A. Kourta and C. Leclerc, “Characterization of synthetic jet actuation with application to Ahmed body wake,” Sensors Actuators, A Phys., vol. 192, pp. 13–26, 2013, doi: 10.1016/j.sna.2012.12.008.

N. Tounsi, R. Mestiri, L. Keirsbulck, H. Oualli, S. Hanchi, and F. Aloui, “Experimental study of flow control on bluff body using piezoelectric actuators,” J. Appl. Fluid Mech., vol. 9, no. 2, pp. 827–838, 2016, doi: 10.18869/acadpub.jafm.68.225.24488.

P. Joseph, X. Amandolèse, and J.-L. Aider, “Drag reduction on the 25° slant angle Ahmed reference body using pulsed jets,” Exp. Fluids, vol. 52, no. 5, pp. 1169–1185, May 2012, doi: 10.1007/s00348-011-1245-5.

P. Gilliéron et al., “Drag reduction by pulsed jets on strongly unstructured wake: towards the square back control,” Int. J. Aerodyn., vol. 1, no. 3/4, p. pages 282-298, 2011.

P. Gillieron and A. Kourta, “Massive separation control analysis of the pulsed jet actuators effects | Mechanics & Industry | Cambridge Core,” Mech. Ind., vol. 14, no. 6, pp. 441–445, Feb. 2013, Accessed: Apr. 11, 2020. [Online]. Available: https://www.cambridge.org/core/journals/mechanics-and-industry/article/massive-separation-control-analysis-of-the-pulsed-jet-actuators-effects/6F226CECB8B9F259035F63B2D106E94E.

A. Kourta and P. Gilliéron, “Impact of the automotive aerodynamic control on the economic issues,” J. Appl. Fluid Mech., vol. 2, no. 2, pp. 69–75, 2009.

B. Lehugeur, P. Gilliéron, and A. Kourta, “Experimental investigation on longitudinal vortex control over a dihedral bluff body,” Exp. Fluids, vol. 48, no. 1, pp. 33–48, Jan. 2010, doi: 10.1007/s00348-009-0707-5.

E. Wassen and F. Thiele, “Road vehicle drag reduction by combined steady blowing and suction,” in 39th AIAA Fluid Dynamics Conference, 2009, doi: 10.2514/6.2009-4174.

J. T. Whiteman and M. Zhuang, “Active flow control schemes for bluff body drag reduction,” in American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM, Dec. 2016, vol. 1A-2016, doi: 10.1115/FEDSM2016-7520.

V. Boucinha, R. Weber, and A. Kourta, “Drag reduction of a 3D bluff body using plasma actuators,” Int. J. Aerodyn., vol. 1, no. 3/4, p. 262, 2011, doi: 10.1504/ijad.2011.038845.

S Shadmani, S. M. Mousavi Nainiyan, Ramin Ghasemiasl, and Masoud Mirzaei, “Experimental Study of Flow Control Over an Ahmed Body Using Plasma Actuator,” Mech. Mech. Eng., vol. 22, no. 1, pp. 239–251, Jun. 2018, Accessed: Apr. 11, 2020. [Online]. Available: https://www.researchgate.net/publication/325847753_Experimental_Study_of_Flow_Control_Over_an_Ahmed_Body_Using_Plasma_Actuator.

B. Khalighi, J. Ho, J. Cooney, B. Neiswander, T. C. Corke, and T. Han, “Aerodynamic drag reduction investigation for a simplified road vehicle using plasma flow control,” in American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM, Dec. 2016, vol. 1A-2016, doi: 10.1115/FEDSM2016-7927.

J. L. Aider, J. F. Beaudoin, and J. E. Wesfreid, “Drag and lift reduction of a 3D bluff-body using active vortex generators,” Exp. Fluids, vol. 48, no. 5, pp. 771–789, May 2010, doi: 10.1007/s00348-009-0770-y.

I. Kim and H. Chen, “Reduction of aerodynamic forces on a minivan by a pair of vortex generators of a pocket type,” Int. J. Veh. Des., vol. 53, no. 4, pp. 300–316, Jul. 2010, doi: 10.1504/IJVD.2010.034103.

G. Pujals, S. Depardon, and C. Cossu, “Drag reduction of a 3D bluff body using coherent streamwise streaks,” Exp. Fluids, vol. 49, no. 5, pp. 1085–1094, Nov. 2010, doi: 10.1007/s00348-010-0857-5.

G. Filip, K. Maki, P. Bachant, and R. Lietz, “Simulation of Flow Control Devices in Support of Vehicle Drag Reduction,” in SAE Technical Papers, Apr. 2018, vol. 2018-April, doi: 10.4271/2018-01-0713.

S. Krajnović, “Large eddy simulation exploration of passive flow control around an Ahmed body,” J. Fluids Eng. Trans. ASME, vol. 136, no. 12, Dec. 2014, doi: 10.1115/1.4027221.

Walid Ibrahim Mazyan, “Numerical simulations of drag-reducing devices for ground vehicles ,” American University of Sharjah, Sharjah, 2013.

G. Shankar and G. Devaradjane, “Experimental and computational analysis on aerodynamic behavior of a car model with vortex generators at different yaw angles,” J. Appl. Fluid Mech., vol. 11, no. 1, pp. 285–295, 2018, doi: 10.29252/jafm.11.01.28357.

I. Kim, H. Chen, and R. C. Shulze, “A rear spoiler of a new type that reduces the aerodynamic forces on a mini-van,” in SAE Technical Papers, Apr. 2006, doi: 10.4271/2006-01-1631.

J.-F. Beaudoin and J.-L. Aider, “Drag and lift reduction of a 3D bluff body using flaps,” Exp. Fluids, vol. 44, no. 4, pp. 491–501, Apr. 2008, doi: 10.1007/s00348-007-0392-1.

J. Tian, Y. Zhang, H. Zhu, and H. Xiao, “Aerodynamic drag reduction and flow control of Ahmed body with flaps,” Adv. Mech. Eng., vol. 9, no. 7, pp. 1–17, 2017, doi: 10.1177/1687814017711390.

J. Marklund, L. Lofdahl, H. Danielsson, and G. Olsson, “Performance of an Automotive Under-Body Diffuser Applied to a Sedan and a Wagon Vehicle,” SAE Int. J. Passeng. Cars - Mech. Syst., vol. 6, no. 1, pp. 293–307, Apr. 2013, doi: 10.4271/2013-01-0952.

J. Cho, T. K. Kim, K. H. Kim, and K. Yee, “Comparative investigation on the aerodynamic effects of combined use of underbody drag reduction devices applied to real sedan,” Int. J. Automot. Technol., vol. 18, no. 6, pp. 959–971, Dec. 2017, doi: 10.1007/s12239-017-0094-5.

K. S. Song et al., “Aerodynamic design optimization of rear body shapes of a sedan for drag reduction,” Int. J. Automot. Technol., vol. 13, no. 6, pp. 905–914, Oct. 2012, doi: 10.1007/s12239-012-0091-7.

X. Hu et al., “Automotive shape optimization using the radial basis function model based on a parametric surface grid,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 230, no. 13, pp. 1808–1821, Nov. 2016, doi: 10.1177/0954407015624042.

C. H. Bruneau, E. Creusé, D. Depeyras, P. Gilliéron, and I. Mortazavi, “Coupling active and passive techniques to control the flow past the square back Ahmed body,” Comput. Fluids, vol. 39, no. 10, pp. 1875–1892, Dec. 2010, doi: 10.1016/j.compfluid.2010.06.019.

. B., . H., E. A. Kosasih, R. F. Karim, and J. Julian, “Drag reduction by combination of flow control using inlet disturbance body and plasma actuator on cylinder model,” J. Mech. Eng. Sci., vol. 13, no. 1, pp. 4503–4511, Mar. 2019, doi: 10.15282/jmes.13.1.2019.12.0382.

A. Evrard, O. Cadot, C. Sicot, V. Herbert, D. Ricot, and R. Vigneron, “Comparative effects of vortex generators on Ahmed’s squareback and minivan car models,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 231, no. 9, pp. 1287–1293, Aug. 2017, doi: 10.1177/0954407016681696.

M. O. L. Hansen et al., “Aerodynamically shaped vortex generators,” Wind Energy, vol. 19, no. 3, pp. 563–567, Mar. 2016, doi: 10.1002/we.1842.

J. C. Lin, F. G. Howard, and G. V. Selbyt, “Small submerged vortex generators for turbulent flow,” J. Spacecr. Rockets, vol. 27, no. 5, pp. 503–507, 1990, doi: 10.2514/3.26172.

P. Martínez-Filgueira, U. Fernandez-Gamiz, E. Zulueta, I. Errasti, and B. Fernandez-Gauna, “Parametric study of low-profile vortex generators,” Int. J. Hydrogen Energy, vol. 42, no. 28, pp. 17700–17712, Jul. 2017, doi: 10.1016/j.ijhydene.2017.03.102.

G. Fourrié, L. Keirsbulck, L. Labraga, and P. Gilliéron, “Bluff-body drag reduction using a deflector,” Exp. Fluids, vol. 50, no. 2, pp. 385–395, Feb. 2011, doi: 10.1007/s00348-010-0937-6.

W. Hanfeng, Z. Yu, Z. Chao, and H. Xuhui, “Aerodynamic drag reduction of an Ahmed body based on deflectors,” J. Wind Eng. Ind. Aerodyn., vol. 148, pp. 34–44, Jan. 2016, doi: 10.1016/j.jweia.2015.11.004.

A. Altaf, A. A. Omar, and W. Asrar, “Passive drag reduction of square back road vehicles,” Jnl. Wind Eng. Ind. Aerodyn., vol. 134, pp. 30–43, 2014, doi: 10.1016/j.jweia.2014.08.006.

C.-H. Bruneau, I. Mortazavi, and P. Gilliéron, “Passive Control Around the Two-Dimensional Square Back Ahmed Body Using Porous,” J. fluid Eng., vol. 130, no. 6, pp. 1–12, 2008, doi: 10.1115/1.2917423.

S. R. Ahmed, G. Ramm, and G. Faltin, “Some Salient Features Of The Time-Averaged Ground Vehicle Wake,” SAE Trans., vol. 93, no. 2, pp. 473–503, Feb. 1984, doi: 10.4271/840300.

H. B. Evans et al., “Engineered bio-inspired coating for passive flow control,” Proc. Natl. Acad. Sci. U. S. A., vol. 115, no. 6, pp. 1210–1214, Feb. 2018, doi: 10.1073/pnas.1715567115.

R. Bansal and R. B. Sharma, “drag reduction of a generic passenger car using vortex generator with different yaw angles,” Int. J. Automob. Eng. Res. Dev., vol. 3, no. 2, pp. 73–80, 2013.

S. Mohandas, R. Krishna Siddharth, and B. John, “Reduction of wave drag on parameterized blunt bodies using spikes with varied tip geometries,” Acta Astronaut., vol. 160, pp. 25–35, Jul. 2019, doi: 10.1016/j.actaastro.2019.04.017.

Downloads

Published

2021-06-10

How to Cite

[1]
N. A. Siddiqui and M. Agelin-Chaab, “Nature-inspired solutions to bluff body aerodynamic problems: A review”, J. Mech. Eng. Sci., vol. 15, no. 2, pp. 8095–8140, Jun. 2021.

Issue

Section

Article