Magnetohydrodynamic peristaltic flow of Bingham fluid in a channel: An application to blood flow

Authors

  • C. Rajashekhar Department of Mathematics, Karnataka State Akkamahadevi Women’s University, Vijayapura 586108, Karnataka, INDIA
  • G. Manjunatha Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, INDIA
  • F. Mebarek-Oudina Department of Physics, Faculty of Sciences, University of 20août 1955-Skikda, Skikda 21000, ALGERIA
  • Hanumesh Vaidya Department of Mathematics, Vijayanagara Sri Krishnadevaraya University, Ballari 583105, Karnataka, INDIA
  • K. V. Prasad Department of Mathematics, Vijayanagara Sri Krishnadevaraya University, Ballari 583105, Karnataka, INDIA
  • K. Vajravelu Department of Mathematics, University of Central Florida, Orlando FL 32816, USA
  • A. Wakif Laboratory of Mechanics, Faculty of Sciences Aïn Chock, Hassan II University, B.P. 5366 Mâarif, Casablanca 20000, MOROCCO

DOI:

https://doi.org/10.15282/jmes.15.2.2021.12.0637

Keywords:

Thermal Slip, velocity Slip, concentration slip, wall rigidity, wall elasticity

Abstract

The paper examined a theoretical investigation of the stimulus of mass and heat transfer on the channel's peristaltic utilization of the MHD Bingham liquid. The research study is motivated to explore blood circulation in the little vessels by taking the slip, variable thermal conductivity, and thickness of the wall features into account.  The leading constitutive equations are established based on low Reynolds number and approximations for long wavelengths. The solution for the resulting nonlinear energy and momentum equations is obtained using a semi-analytic method, while the exact solution for the concentration field is obtained. Using the MATLAB software, the influences of different constraints on the interest of physiological quantities are represented graphically. One of the considerable outcomes of the current model exposes that the existence of variable fluid properties boosts the rate as well as temperature level areas. The rheological and flow properties of various biological fluids can be derived from this model as a particular case. Moreover, the formation of stuck bolus diminishes for larger values of the magnetic and velocity slip constraints.

Author Biographies

C. Rajashekhar, Department of Mathematics, Karnataka State Akkamahadevi Women’s University, Vijayapura 586108, Karnataka, INDIA

Research Assistant, Bhaskaracharya Study Chair, Karnataka State Akkamahadevi Women’s University

G. Manjunatha, Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, INDIA

Professor, Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India

K. V. Prasad, Department of Mathematics, Vijayanagara Sri Krishnadevaraya University, Ballari 583105, Karnataka, INDIA

Professor, Vijayanagara Sri Krishnadevaraya University Jnana Sagara Campus,Vinayaka Nagar Cantonment,Ballari: 583105

K. Vajravelu, Department of Mathematics, University of Central Florida, Orlando FL 32816, USA

Professor, University of Central Florida, Orlando FL 32816, USA

A. Wakif, Laboratory of Mechanics, Faculty of Sciences Aïn Chock, Hassan II University, B.P. 5366 Mâarif, Casablanca 20000, MOROCCO

Professor, Laboratory of Mechanics, Faculty of Sciences Aïn Chock, Hassan II University, B.P. 5366 Mâarif, Casablanca 20000, Morocco

References

T. W. Latham, “Fluid motions in a peristaltic pump.” 1966.

K. . Raju and R. Devantahan, “Peristaltic trasport of non-Newtonian fluid,” Rheol. Acta, vol. 11, pp. 170–178, 1972.

S. Nadeem and S. Akram, “Peristaltic Flow of a Maxwell Model Through Porous Boundaries in a Porous Medium,” Transp. Porous Media, vol. 86, no. 3, pp. 895–909, 2011, doi: 10.1007/s11242-010-9663-z.

G. Böhme and A. Müller, “Analysis of non-Newtonian effects in peristaltic pumping,” J. Nonnewton. Fluid Mech., vol. 201, pp. 107–119, 2013, doi: 10.1016/j.jnnfm.2013.08.002.

M. G. Reddy, B. C. Prasannakumara, and O. D. Makinde, “Cross diffusion impacts on hydromagnetic radiative peristaltic carreau-casson nanofluids flow in an irregular channel,” Defect Diffus. Forum, vol. 377, pp. 62–83, 2017, doi: 10.4028/www.scientific.net/DDF.377.62.

C. Rajashekhar, G. Manjunatha, K. V Prasad, B. B. Divya, and H. Vaidya, “Peristaltic transport of two-layered blood flow using Herschel-Bulkley Model ,” Cogent Eng., vol. 5, p. 1495592, 2017, doi: 10.1080/23311916.2018.1495592.

S. Nadeem and S. Akram, “Heat transfer in a peristaltic flow of MHD fluid with partial slip,” Commun. Nonlinear Sci. Numer. Simul., vol. 15, no. 2, pp. 312–321, 2010, doi: 10.1016/j.cnsns.2009.03.038.

N. S. Akbar and S. Nadeem, “Thermal and velocity slip effects on the peristaltic flow of a six constant Jeffrey’s fluid model,” Int. J. Heat Mass Transf., vol. 55, no. 15–16, pp. 3964–3970, 2012, doi: 10.1016/j.ijheatmasstransfer.2012.03.026.

R. Latha, B. R. Kumar, and O. D. Makinde, “Peristaltic flow of couple stress fluid in an asymmetric channel with partial slip,” Defect Diffus. Forum, vol. 387, pp. 385–402, 2018, doi: 10.4028/www.scientific.net/DDF.387.385.

A. Wakif, Z. Boulahia, S. R. Mishra, M. Mehdi Rashidi, and R. Sehaqui, “Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno’s mathematical model,” Eur. Phys. J. Plus, vol. 133, no. 5, 2018, doi: 10.1140/epjp/i2018-12037-7.

B. Mahanthesh, G. Lorenzini, F. M. Oudina, and I. L. Animasaun, “Significance of exponential space- and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces,” J. Therm. Anal. Calorim., vol. 141, no. 1, pp. 37–44, 2020, doi: 10.1007/s10973-019-08985-0.

S. Hamrelaine, F. Mebarek-Oudina, and M. R. Sari, “Analysis of MHD Jeffery Hamel flow with suction/injection by homotopy analysis method,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 58, no. 2, pp. 173–186, 2019.

F. Mebarek-Oudina, “Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source,” Heat Transf. - Asian Res., vol. 48, no. 1, pp. 135–147, 2019, doi: 10.1002/htj.21375.

S. S. J. Raza, F. Mebarek-Oudina, P. Ram, “MHD flow of non-Newtonian molybdenum disulfide nanofluid in a converging/diverging channel with Rosseland radiation,” Defect Diffus. Forum, vol. 401, pp. 92–106, 2020.

S. Marzougui, F. Mebarek-Oudina, A. Assia, M. Magherbi, Z. Shah, and K. Ramesh, “Entropy generation on magneto-convective flow of copper–water nanofluid in a cavity with chamfers,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 2203–2214, 2021, doi: 10.1007/s10973-020-09662-3.

X. Guo, J. Zhou, H. Xie, and Z. Jiang, “MHD peristaltic flow of fractional Jeffrey model through porous medium,” Math. Probl. Eng., vol. 2018, 2018, doi: 10.1155/2018/6014082.

T. Hayat, H. Zahir, A. Tanveer, and A. Alsaedi, “Soret and Dufour effects on MHD peristaltic flow of Prandtl fluid in a rotating channel,” Results Phys., vol. 8, pp. 1291–1300, 2018, doi: 10.1016/j.rinp.2018.01.058.

A. Tanveer, T. Hayat, and A. Alsaedi, “Peristaltic flow of MHD Jeffery nanofluid in curved channel with convective boundary conditions: a numerical study,” Neural Comput. Appl., vol. 30, no. 2, pp. 437–446, 2018, doi: 10.1007/s00521-016-2705-x.

K. A. Kumar, B. Ramadevi, V. Sugunamma, and J. V. R. Reddy, “Heat transfer characteristics on MHD Powell-Eyring fluid flow across a shrinking wedge with non-uniform heat source/sink,” J. Mech. Eng. Sci., vol. 13, no. 1, pp. 4558–4574, 2019, doi: 10.15282/jmes.13.1.2019.15.0385.

G. Manjunatha, C. Rajashekhar, H. Vaidya, K. V. Prasad, O. D. Makinde, and J. U. Viharika, “Impact of Variable Transport Properties and Slip Effects on MHD Jeffrey Fluid Flow Through Channel,” Arab. J. Sci. Eng., vol. 45, no. 1, pp. 417–428, Jan. 2020, doi: 10.1007/s13369-019-04266-y.

T. Hayat, M. U. Qureshi, and N. Ali, “The influence of slip on the peristaltic motion of a third order fluid in an asymmetric channel,” Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 372, no. 15, pp. 2653–2664, 2008, doi: 10.1016/j.physleta.2007.12.049.

C. Rajashekhar, G. Manjunatha, H. Vaidya, B. B. Divya, and K. V. Prasad, “Peristaltic Flow of Casson Liquid in an Inclined Porous Tube with Convective Boundary Conditions and Variable Liquid Properties,” Front. Heat Mass Transf., vol. 11, Nov. 2018, doi: 10.5098/hmt.11.35.

G. Manjunatha, C. Rajashekhar, H. Vaidya, K. V. Prasad, and O. D. Makinde, “Effects Wall Properties on Peristaltic Transport of Rabinowitsch Fluid through an Inclined Non-Uniform Slippery Tube,” Defect Diffus. Forum, vol. 392, pp. 138–157, Apr. 2019, doi: 10.4028/www.scientific.net/DDF.392.138.

G. Manjunatha, H. Vaidya, C. Rajashekhar, and K. V. Prasad, “Peristaltic Flow of a Jeffery Fluid with Heat Transfer in an Inclined Porous Tube under the Influence of Slip and Variable Viscosity,” Defect Diffus. Forum, vol. 393, pp. 16–30, Jun. 2019, doi: 10.4028/www.scientific.net/DDF.393.16.

G. Manjunatha, C. Rajashekhar, H. Vaidya, and K. V. Prasad, “Simultaneous effects of heat transfer and variable viscosity on peristaltic transport of Casson fluid flow in an inclined porous tube,” Int. J. Appl. Mech. Eng., vol. 24, no. 2, pp. 309–328, May 2019, doi: 10.2478/ijame-2019-0020.

A. Bouaffane and K. Talbi, “Thermal study of fluid flow inside an annular pipe filled with porous media under local thermal non-equilibrium condition,” J. Mech. Eng. Sci., vol. 13, no. 2, pp. 4880–4897, 2019.

S. Srinivas, R. Gayathri, and M. Kothandapani, “The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport,” Comput. Phys. Commun., vol. 180, no. 11, pp. 2115–2122, 2009, doi: 10.1016/j.cpc.2009.06.015.

T. Hayat, M. Javed, and N. Ali, “MHD peristaltic transport of a Jeffery fluid in a channel with compliant walls and porous space,” Transp. Porous Media, vol. 74, no. 3, pp. 259–274, 2008, doi: 10.1007/s11242-007-9196-2.

M. Javed, T. Hayat, and A. Alsaedi, “Peristaltic flow of Burgers’ fluid with compliant walls and heat transfer,” Appl. Math. Comput., vol. 244, pp. 654–671, 2014, doi: 10.1016/j.amc.2014.07.009.

N. S. Gad, “Effects of hall currents on peristaltic transport with compliant walls,” Appl. Math. Comput., vol. 235, pp. 546–554, 2014, doi: 10.1016/j.amc.2014.02.081.

M. Lachiheb, “Effect of coupled radial and axial variability of viscosity on the peristaltic transport of Newtonian fluid,” Appl. Math. Comput., vol. 244, pp. 761–771, 2014, doi: 10.1016/j.amc.2014.07.062.

M. Lachiheb, “On the effect of variable viscosity on the peristaltic transport of a Newtonian fluid in an asymmetric channel,” Can. J. Phys., vol. 94, pp. 320–327, 2016.

M. Awais, U. Bukhari, A. Ali, and H. Yasmin, “Convective and peristaltic viscous fluid flow with variable viscosity,” J. Eng. Thermophys., vol. 26, no. 1, pp. 69–78, 2017, doi: 10.1134/S1810232817010088.

B. B. Divya, G. Manjunatha, C. Rajashekhar, V. Hanumesh, and K. V. Prasad, “Impact of variable liquid properties on peristaltic mechanism of convectively heated Jeffrey fluid in a slippery elastic tube,” Front. Heat Mass Transf., vol. 12, Apr. 2019, doi: 10.5098/hmt.12.15.

H. Vaidya, C. Rajashekhar, G. Manjunatha, and K. V. Prasad, “Peristaltic mechanism of a Rabinowitsch fluid in an inclined channel with complaint wall and variable liquid properties,” J. Brazilian Soc. Mech. Sci. Eng., vol. 41, no. 1, p. 52, Jan. 2019, doi: 10.1007/s40430-018-1543-4.

S. Akram, S. Nadeem, and A. Hussain, “Effects of heat and mass transfer on peristaltic flow of a Bingham fluid in the presence of inclined magnetic field and channel with different wave forms,” J. Magn. Magn. Mater., vol. 362, pp. 184–192, 2014, doi: 10.1016/j.jmmm.2014.02.063.

L. Fusi and A. Farina, “Peristaltic axisymmetric flow of a Bingham fluid,” Appl. Math. Comput., vol. 320, pp. 1–15, 2018, doi: 10.1016/j.amc.2017.09.017.

G. Manjunatha, C. Rajashekhar, H. Vaidya, and K. V. Prasad, “Peristaltic mechanism of Bingham liquid in a convectively heated porous tube in the presence of variable liquid properties,” Spec. Top. Rev. Porous Media An Int. J., vol. 10, no. 2, pp. 187–201, 2019, doi: 10.1615/SpecialTopicsRevPorousMedia.2019026973.

H. Vaidya, C. Rajashekhar, G. Manjunatha, K. V Prasad, O. D. Makinde, and K. Vajravelu, “Heat and mass transfer analysis of MHD peristaltic flow through a complaint porous channel with variable thermal conductivity,” Phys. Scr., vol. 95, no. 4, p. 045219, Apr. 2020, doi: 10.1088/1402-4896/ab681a.

R. Choudhari, M. Gudekote, H. Vaidya, K. V. Prasad, and S. U. Khan, “Rheological effects on peristaltic transport of Bingham fluid through an elastic tube with variable fluid properties and porous walls,” Heat Transf., vol. 49, no. 6, pp. 3391–3408, 2020, doi: 10.1002/htj.21779.

Downloads

Published

2021-06-10

How to Cite

[1]
R. C, “Magnetohydrodynamic peristaltic flow of Bingham fluid in a channel: An application to blood flow”, J. Mech. Eng. Sci., vol. 15, no. 2, pp. 8082–8094, Jun. 2021.

Issue

Section

Article

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.