Characterization of aluminium matrix composite of Al-ZnSiFeCuMg alloy reinforced with silica sand tailings particles

Authors

  • Sukanto . Politeknik Manufaktur Negeri Bangka Belitung, Kawasan Industri Airkantung, Sungailiat, Bangka, 33211, Indonesia. Phone: (+62) 717-93586, Fax: (+62) 717- 93585
  • Rudy Soenoko Fakultas Teknik, Universitas Brawijaya, Jl. M.T. Haryono 167, Malang, Indonesia
  • Wahyono Suprapto Fakultas Teknik, Universitas Brawijaya, Jl. M.T. Haryono 167, Malang, Indonesia
  • Yudy Surya Irawan Fakultas Teknik, Universitas Brawijaya, Jl. M.T. Haryono 167, Malang, Indonesia

DOI:

https://doi.org/10.15282/jmes.14.3.2020.11.0556

Keywords:

silica-sand-tailing, grain-size, hot-compaction, sintering, hardness, wear-resistance, aluminium matrix composite

Abstract

Due to the increased demand for aluminium and the prohibitive cost of producing primary aluminium, the process of making AMCs using recycled aluminium alloy as a matrix and silica sand tailing without leaching as a filler is essential to be developed. For more cost-effective, the purpose of this study is to make particulate aluminium composite matrix AMCs with a matrix of recycled aluminium and reinforced with silica sand tailing without leaching. This research involves the effect of differences in grain size and filler weight percentage on matrix Al-ZnSiFeCuMg recycled aluminium alloy powder. This study used powder metallurgy technology as well as two-way hot-compaction (300°C) and applied a sintering temperature of 550°C. Density, hardness, and wear testing, as well as microstructure analysis, were conducted to determine the characteristics of the resulting AMCs. An increase in hardness of 67% was achieved by the AMCs-164 µm-20%SiO2 specimen, which used a filler grain size of 164 µm wt.20%. Meanwhile, AMCs-31 µm-20%SiO2, which used a filler grain size of 31 µm, only increased by 63%. The wear test result also showed a lower wear rate achieved by the AMCs-164 µm-20%SiO2 specimen. The results analyses using SEM-EDS instruments showed higher agglomeration and porosity in specimens using a filler grain size of 31 µm, while AMCs using a filler grain size of 164 µm showed an even spread of filler powder. Therefore, AMCs that used 164 µm powder-sized fillers have a stronger bond between the filler and the matrix and produce AMCs that are harder than AMCs that use 31 µm fillers.

References

J. Eliasson and R. Sandström, “Applications of Aluminium Matrix Composites,” Key Eng. Mater., vol. 104–107, pp. 3–36, Mar. 2009, doi: 10.4028/www.scientific.net/kem.104-107.3.

C. C. Nwobi-Okoye and B. Q. Ochieze, “Age hardening process modeling and optimization of aluminum alloy A356/Cow horn particulate composite for brake drum application using RSM, ANN and simulated annealing,” Def. Technol., vol. 14, no. 4, pp. 336–345, 2018, doi: 10.1016/j.dt.2018.04.001.

A. . Adebisi, M. . Maleque, and M. . Rahman, “Metal matrix composite brake rotor : historical develovment and product life cycle analysis,” Int. J. Automot. Mech. Eng., vol. 4, no. July-Desember, pp. 471–480, 2011, doi: 10.15282/ijame.4.2011.8.0038.

P. Garg, A. Jamwal, D. Kumar, K. K. Sadasivuni, C. M. Hussain, and P. Gupta, “Advance research progresses in aluminium matrixcomposites: Manufacturing & applications,” J. Mater. Res. Technol., vol. 8, no. 5, pp. 4924–4939, 2019, doi: 10.1016/j.jmrt.2019.06.028.

A. Kurt and M. Boz, “Wear behaviour of organic asbestos based and bronze based powder metal brake linings,” Mater. Des., vol. 26, no. 8, pp. 717–721, 2005, doi: 10.1016/j.matdes.2004.09.006.

V. S. Aigbodion, U. Akadike, S. B. Hassan, F. Asuke, and J. O. Agunsoye, “Development of asbestos - free brake pad using bagasse,” Tribol. Ind., vol. 32, no. 1, pp. 12–18, 2010, doi: http://www.tribology.rs/journals/2010/2010-1/2.

S. Furuya, O. Chimed-Ochir, K. Takahashi, A. David, and J. Takala, “Global asbestos disaster,” Int. J. Environ. Res. Public Health, vol. 15, no. 5, 2018, doi: 10.3390/ijerph15051000.

H. Ghandvar, M. H. Idris, N. Ahmad, and N. Moslemi, “Microstructure development, mechanical and tribological properties of a semisolid A356/xSiCp composite,” J. Appl. Res. Technol., vol. 15, no. 6, pp. 533–544, 2017, doi: 10.1016/j.jart.2017.06.002.

A. A. Agbeleye, D. E. Esezobor, S. A. Balogun, J. O. Agunsoye, J. Solis, and A. Neville, “Tribological properties of aluminium-clay composites for brake disc rotor applications,” J. King Saud Univ. - Sci., vol. xxx, pp. xxx–xxx, 2017, doi: 10.1016/j.jksus.2017.09.002.

A. P. S. V. R. Subrahmanyam, J. Madhukiran, G. Naresh, and S. Madhusudhan, “Fabrication and characterization of Al356.2, rice husk ash and fly ash reinforced hybrid metal matrix composite,” Int. J. Adv. Sci. Technol., vol. 94, pp. 49–56, 2016, doi: 10.14257/ijast.2016.94.05.

C. U. Atuanya, D. I. Ekweghiariri, and C. M. Obele, “Experimental study on the microstructural and anti-corrosion behaviour of Co-deposition Ni–Co–SiO2 composite coating on mild steel,” Def. Technol., vol. 14, no. 1, pp. 64–69, 2018, doi: 10.1016/j.dt.2017.10.001.

E. Velasco and J. Nino, “Recycling of aluminium scrap for secondary Al-Si alloys,” Waste Manag. Res., vol. 29, no. 7, pp. 686–693, 2011, doi: 10.1177/0734242X10381413.

EAFA, “Environmental Profile Report 2018 on Life-Cycle inventory data for aluminium production and transformation processes in Europe,” in European Aluminium, February 2., no. The Aluminium Effect, Avenue de Tervueren 168 B-1150 Brussels, Belgium: European Aluminium, 2018.

S. Liu, X. Li, and M. Wang, “Analysis of aluminum resource supply structure and guarantee degree in China based on sustainable perspective,” Sustain., vol. 8, no. 12, pp. 1–17, 2016, doi: 10.3390/su8121335.

Sukarman and R. A. Gani, “Ex-mining Land in Bangka and Belitung Islands, Indonesia and Their Suitability for Agricultural Commodities,” J. Tanah dan Iklim, vol. 41, no. 2, pp. 101–112, 2017, doi: 10.2017/jti.v41i2.7176.

N. R. Setiati, “The Potential Use of Silica Sand as Nanomaterials for Mortar,” in AIP Conference Proceedings 1903, 2017, vol. 050010, doi: 10.1063/1.5011549.

L. P. Santi, D. Mulyanto, and D. H. Goenadi, “Double Acid-Base Extraction of Silicic Acid from Quartz Sand,” J. Miner. Mater. Charact. Eng., vol. 05, no. 06, pp. 362–373, 2017, doi: 10.4236/jmmce.2017.56030.

A. Wahyudi, A. Dessy, and Sariman, “Preparation of Nano Silica from Silica Sand Through Alkali Fusion,” Indones. Min. J., vol. 16, no. october 2013, pp. 149–153, 2013, doi: 10.30556/imj.Vol16.No3.2013.383.

M. Xing, Z. Fu, Y. Wang, J. Wang, and Z. Zhang, “Lead recovery and high silica glass powder synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced glass phase separation process,” J. Hazard. Mater., vol. 322, pp. 479–487, 2017, doi: 10.1016/j.jhazmat.2016.10.012.

A. Fuad, N. Mufti, M. Diantoro, Subakti, and S. Septa Kurniawati, “Synthesis and characterization of highly purified nanosilica from pyrophyllite ores,” in AIP Conference Proceedings, 2016, vol. 1719, doi: 10.1063/1.4943715.

S. H. Huo, M. Qian, G. B. Schaffer, and E. Crossin, “Aluminium powder metallurgy,” Fundam. Alum. Metall. Woodhead Publ. Ltd., 2011, doi: 10.1533/9780857090256.3.655.

C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci., vol. 46, pp. 1–184, 2001, doi: PII: S0079-6425(99)00010-9.

M. Sherif El-Eskandarany, Mechanical Alloying, Nanotechnology, Material Sciences and Powder Metallurgy, Second Edi., vol. 39, no. 8. kuwait: Kuwait Institute for Scientific Research, 1987.

K. R. Kumar, K. M. Mohanasundaram, G. Arumaikkannu, and R. Subramanian, “Effect of particle size on mechanical properties and tribological behaviour of aluminium/fly ash composites,” Sci. Eng. Compos. Mater., vol. 19, no. 3, pp. 247–253, 2012, doi: 10.1515/secm-2011-0139.

P. M. Gopal, K. Soorya Prakash, S. Nagaraja, and N. Kishore Aravinth, “Effect of weight fraction and particle size of CRT glass on the tribological behaviour of Mg-CRT-BN hybrid composites,” Tribol. Int., vol. 116, pp. 338–350, 2017, doi: 10.1016/j.triboint.2017.07.025.

S. K. Jo, W. J. Lee, Y. H. Park, and I. M. Park, “Effect of SiC particle size on wear properties of Al 2O 3•SiO 2/SiC/Mg hybrid metal matrix composites,” Tribol. Lett., vol. 45, no. 1, pp. 101–107, 2012, doi: 10.1007/s11249-011-9866-7.

J. K. Chen, T. P. Tang, S. F. Chan, and S. H. Chang, “Effects of particle size on mechanical properties of a TiC containing tool steel by hot isostatic press,” Mater. Trans., vol. 49, no. 3, pp. 624–628, 2008, doi: 10.2320/matertrans.MER2007262.

J. Liu et al., “Effect of powder metallurgy synthesis parameters for pure aluminium on resultant mechanical properties,” Int. J. Mater. Form., vol. 12, no. 1, pp. 79–87, 2019, doi: 10.1007/s12289-018-1408-5.

A. Chaubey, P. Konda Gokuldoss, Z. Wang, S. Scudino, N. Mukhopadhyay, and J. Eckert, “Effect of Particle Size on Microstructure and Mechanical Properties of Al-Based Composite Reinforced with 10 Vol.% Mechanically Alloyed Mg-7.4%Al Particles,” Technologies, vol. 4, no. 4, p. 37, Nov. 2016, doi: 10.3390/technologies4040037.

Y. C. Huang, C. H. Su, S. K. Wu, and C. Lin, “A study on the hall-petch relationship and grain growth kinetics in FCC-structured high/medium entropy alloys,” Entropy, vol. 21, no. 3, pp. 1–13, 2019, doi: 10.3390/e21030297.

S. A. Sajjadi, H. R. Ezatpour, and H. Beygi, “Microstructure and mechanical properties of Al-Al2O3 micro and nano composites fabricated by stir casting,” Mater. Sci. Eng. A, vol. 528, no. 29–30, pp. 8765–8771, 2011, doi: 10.1016/j.msea.2011.08.052.

M. A. Maleque, S. Dyuti, and M. M. Rahman, “Material selection method in design of automotive brake disc,” in Proceedings of the World Congress on Engineering 2010 Vol III WCE 2010, June 30 - July 2, 2010, London, U.K., 2010, vol. III, pp. 2322–2326.

H. L. Rizkalla and A. Abdulwahed, “Some mechanical properties of metal-nonmetal Al-SiO2 particulate composites,” J. Mater. Process. Technol., vol. 56, pp. 398–403, 1996, doi: org/10.1016/0924-0136(96)85107-7.

Zuhailawati H., P. Samayamutthirian, and Mohd Haizu C.H., “Fabrication of low cost of aluminium ,matrix composite reinforced with silica sand,” J. Phys. Sci., vol. 18, no. 1, pp. 47–55, 2007, [Online]. Available: http://www.usm.my/jps/18-1-07/Article 18-1-5.pdf.

S. Mohan, G. Gautam, N. Kumar, R. K. Gautam, A. Mohan, and A. K. Jaiswal, “Dry sliding wear behavior of Al-SiO 2 composites,” Compos. Interfaces, vol. 23, no. 6, pp. 493–502, 2016, doi: 10.1080/09276440.2016.1149363.

N. K. Yusuf, M. A. Lajis, and A. Ahmad, “Hot press as a sustainable direct recycling technique of aluminium: Mechanical properties and surface integrity,” Materials (Basel)., vol. 10, no. 8, 2017, doi: 10.3390/ma10080902.

I. A. Wahyudie, R. Soenoko, W. Suprapto, and Y. S. Irawan, “Optimizing warm compaction parameters on the porosity and hardness of Bronze/Tin ore waste composites,” in IOP Conference Series: Materials Science and Engineering, 2019, vol. 494, no. 1, pp. 0–12, doi: 10.1088/1757-899X/494/1/012101.

W. Suprapto, “Processed of Sand Ore Iron Oxide Ferro Low as Raw Steel in Reveberatory Furnace,” in Proceedings of the 2015 International Conference on Advanced Manufacturing and Industrial Application, 2015, no. Advances in Engineering Research, pp. 26–30, doi: 10.2991/icamia-15.2015.7.

ASTM International, “Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle,” Astm B962-13, vol. i, pp. 1–7, 2013, doi: 10.1520/B0962-13.2.

M. Chegini, M. H. Shaeri, R. Taghiabadi, S. Chegini, and F. Djavanroodi, “The Correlation of Microstructure and Mechanical Properties of In-Situ Al-Mg2Si Cast Composite Processed by Equal Channel Angular Pressing,” Materials (Basel)., vol. 12, no. 9, pp. 1–12, 2019, doi: 10.3390/ma12091553.

M. Nagaral, V. Auradi, S. A. Kori, and V. Hiremath, “Investigations on mechanical and wear behavior of nano Al2O3 particulates reinforced AA7475 alloy composites,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013, doi: 110.15282/jmes.13.1.2019.19.0389.

I. A. Wahyudie, R. Soenoko, W. Suprapto, and Y. S. Irawan, “Enhanching hardness and wear resistance of ZrSiO4-SnO2 / Cu10Sn composite produced by warm compaction and sintering,” metalurgija, 2020.

M. . Maleque, M. Radhi, and M. . Rahman, “Wear study of Mg-SiCp reinforcement aluminium metal matrix composite,” J. Mech. Eng. Sci., vol. 10, no. 1, pp. 1758–1764, 2016, doi: org/10.15282/jmes.10.1.2016.1.0169 Wear.

Sukanto, R. Soenoko, W. Suprapto, and Y. S. Irawan, “Parameter Optimization of Ball Milling Process for Silica Sand Tailing,” IOP Conf. Ser. Mater. Sci. Eng., vol. 494, no. 1, 2019, doi: 10.1088/1757-899X/494/1/012073.

M. Skalon, M. Hebda, R. Buzolin, G. Pottlacher, S. Mitsche, and C. Sommitsch, “Preparation method of spherical and monocrystalline aluminum powder,” Metals (Basel)., vol. 9, no. 3, pp. 1–9, 2019, doi: 10.3390/met9030375.

S. Lucas, M. T. Tognonvi, J. L. Gelet, J. Soro, and S. Rossignol, “Interactions between silica sand and sodium silicate solution during consolidation process,” J. Non. Cryst. Solids, vol. 357, no. 4, pp. 1310–1318, 2011, doi: 10.1016/j.jnoncrysol.2010.12.016.

R. Milke, “Geomaterials in the manuscript archive: the composition of writing sands and the regional distribution of writing-sand types in SW-Germany and northern Switzerland, 14th to 19th century,” Eur. J. Mineral., vol. 24, no. 4, pp. 759–770, 2012, doi: 10.1127/0935-1221/2012/0024-2207.

F. N. Ahmad, M. Jaafar, S. Palaniandy, and K. A. M. Azizli, “Effect of particle shape of silica mineral on the properties of epoxy composites,” Compos. Sci. Technol., vol. 68, no. 2, pp. 346–353, 2008, doi: 10.1016/j.compscitech.2007.07.015.

Downloads

Published

2020-09-30

How to Cite

[1]
S. ., R. Soenoko, W. Suprapto, and Y. S. Irawan, “Characterization of aluminium matrix composite of Al-ZnSiFeCuMg alloy reinforced with silica sand tailings particles”, J. Mech. Eng. Sci., vol. 14, no. 3, pp. 7094–7108, Sep. 2020.