Wavelet transform based features of skin blood flow response signal for pressure ulcer evaluation

Authors

  • Saliza Ramli Faculty of Engineering, Universiti Putra Malaysia 43400 Serdang, Selangor, Malaysia
  • Raja Kamil Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • Siti Anom Ahmad Faculty of Engineering, Universiti Putra Malaysia 43400 Serdang, Selangor, Malaysia
  • Norhafizah Mohtaruddin Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 43400 Serdang, Selangor, Malaysia
  • Rozi Mahmud Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 43400 Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.15282/jmes.14.3.2020.29.0574

Keywords:

Pressure Ulcer, Skin Blood Flow, Continuous Wavelet Transform, average amplitude, relative amplitude, Morlet wavelet

Abstract

Pressure Ulcers (PUs) are localized tissue damage that usually occur over the soft tissue of body prominence when a subject is exposed to prolonged external mechanical loading. Several studies have proposed that skin blood flow response (SBFR) can be used in PU evaluation to determine tissue ischemic accumulation due to insufficient time of tissue recovery. In previous study, twenty one Sprague Dawley rats weigh 388-481g that were divided into three different group have been used to investigate the trends of SBFR signal using time domain features like peak reactive hyperaemia (RH), time to peak RH and area under the RH curve as well as frequency domain features like peak power spectral density (PSD) and total PSD. However, the results indicate that both frequency domain features are not effective at determining individual insufficient recovery time. In this study, Continuous Wavelet Transform (CWT) based features such as average amplitude and relative amplitude based on Morlet wavelet function scale 200 are investigated. The results show that the samples representing inconsistent trend of average amplitude for metabolic frequency range are dominant in all short (3 samples) , moderate (4 samples) and prolonged groups (4 samples), while no clear pattern can be established for relative amplitude. Hence both features may not suitable at distinguishing between sufficient and insufficient recovery time due to the low percentage in number of samples.

References

C.L. Capp et al., “Post pressure hyperemia in the rat,” Comp. Biochem. Physiol. Part: A Mol. Integr. Physiol., vol. 137, no. 3, pp. 533–546, Mar. 2004, doi: 10.1016/j.cbpb.2003.11.010.

Z. Li, E. Tam, M.P. Kwan, A. Mak, S. Lo and M.C. Leung, “Effect of prolonged pressure on flowmotion: an investigation using an in vivo rat model,” in 27th IEEE Engineering in Medicine and Biology, 2006, pp. 597–600, doi: 10.1109/IEMBS.2005.1616483.

V. Wong, “Skin blood flow response to 2-hour repositioning in long-term care residents: a pilot study,” J. Wound. Ostomy Continence Nurs., vol. 38, no. 5, pp. 529–537, 2011, doi: 10.1097/WON.0b013e31822aceda.

F. Liao, D. W. Garrison, and Y. K. Jan, “Relationship between nonlinear properties of sacral skin blood flow oscillations and vasodilatory function in people at risk for pressure ulcers,” Microvasc. Res., vol. 80, no. 1, pp. 44–53, 2010, doi: 10.1016/j.mvr.2010.03.009.

N. Aoi, K. Yoshimura, T. Kadono, G. Nakagami, S. Iizuka, T. Higashino, J. Araki, I. Koshima, and H. Sanada, “Ultrasound assessment of deep tissue injury in pressure ulcers: possible prediction of pressure ulcer progression.,” Plast. Reconstr. Surg., vol. 124, pp. 540–550, 2009, doi: 10.1097/PRS.0b013e3181addb33.

Panel NPUA, Prevention and treatment of pressure ulcers: quick reference guide. European Pressure Ulcer Advisory Panel, Pan Pacific Pressure Injury Alliance, 2014.

K. Agrawal and N. Chauhan, “Pressure ulcers: Back to the basics,” Indian J. Plast. Surg., vol. 45, no. 2, pp. 244–254, 2012, doi: 10.4103/0970-0358.101287.

W. Sae-Sia, D. D. Wipke-Tevis, and D. A. Williams, “The effect of clinically relevant pressure duration on sacral skin blood flow and temperature in patients after acute spinal cord injury,” Arch. Phys. Med. Rehabil., vol. 88, no. 12, pp. 1673–1680, 2007, doi: 10.1016/j.apmr.2007.07.037.

Y. T. Tzen, D. M. Brienza, P. Karg, and P. Loughlin, “Effects of local cooling on sacral skin perfusion response to pressure: Implications for pressure ulcer prevention,” J. Tissue Viability, vol. 19, no. 3, pp. 86–97, 2010, doi: 10.1016/j.jtv.2009.12.003.

F. Liao, S. Burns, and Y. Jan, “Skin blood flow dynamics and its role in pressure ulcers,” J. Tissue Viability, vol. 22, no. 2, pp. 25–36, 2013, doi: 10.1016/j.jtv.2013.03.001.

J.-F. Deprez, E. Brusseau, J. J. Fromageau, G. Cloutier, and O. Basset, “On the potential of ultrasound elastography for pressure ulcer early detection,” Med. Phys., vol. 38, no. 4, pp. 1943-50, 2011, doi: 10.1118/1.3560421.

F. D. Fard, S. Moghimi, and R. Lotfi, “Pressure ulcer risk assessment by monitoring interface pressure and temperature,” in 21st Iran. Conf. Electr. Eng., Mashdad, 2013, pp. 1-5, doi: 10.1109/IranianCEE.2013.6599875.

A. Kruger, J. Stewart, R. Sahityani, E. O’Riordan, C. Thompson, S. Adler, R. Garrick, P. Vallance, and M. S. Goligorsky, “Laser doppler flowmetry detection of endothelial dysfunction in end-stage renal disease patients: correlation with cardiovascular risk.,” Int. Soc. Nephrol., vol. 70, no. 1, pp. 157–164, 2006, doi: 10.1038/sj.ki.5001511.

Z. Mallah, N. Nassar, and L. Kurdahi Badr, “The effectiveness of a pressure ulcer intervention program on the prevalence of hospital acquired pressure ulcers: controlled before and after study,” Appl. Nurs. Res., vol. 28, no. 2, pp. 106–113, 2015, doi: 10.1016/j.apnr.2014.07.001.

J. Thorfinn, F. Sjöberg, L. Sjöstrand, and D. Lidman, “Perfusion of the skin of the buttocks in paraplegic and tetraplegic patients, and in healthy subjects after a short and long load,” Scand. J. Plast. Reconstr. Surg. Hand Surg., vol. 40, no. 3, pp. 153–60, 2006, doi: 10.1080/02844310600693179.

J. Thorfinn, F. Sjoberg, and D. Lidman, “Perfusion of buttock skin in healthy volunteers after long and short repetitive loading evaluated by laser Doppler perfusion imager,” Scand. J. Plast. Reconstr. Surg. Hand Surg., vol. 41, no. 6, pp. 297–302, 2007, doi: 10.1080/02844310701633249.

J. H. Yapp, R. Kamil, M. Rozi, N. Mohtarrudin, M. Y. Loqman, A. R. Ezamin, S. A. Ahmad, and Z. Abu Bakar, “Trends of reactive hyperaemia responses to repetitive loading on skin tissue of rats - Implications for pressure ulcer prevention,” J. Tissue Viability, vol. 26, no. 3, pp. 196–201, 2017, doi: 10.1016/j.jtv.2017.03.002.

K. Yabunaka, S. Iizaka, G. Nakagami, M. Fujioka, and H. Sanada, “Three-dimensional ultrasound imaging of the pressure ulcer. A case report,” Med. Ultrason., vol. 17, no. 3, pp. 404–406, 2015, doi: 10.11152/mu.2013.2066.173.kya.

Quintavalle PR, Lyder CH, Mertz PJ, Phillips-Jones C, Dyson M. “Use of high-resolution, high-frequency diagnostic ultra- sound to investigate the pathogenesis of pressure ulcer development,” Adv. Skin Wound Care, vol. 19, pp. 498–505, 2006, doi: 10.1097/00129334-200611000-00010.

C. H. Lyder, Y. Wang, M. Metersky, M. Curry, R. Kliman, N. R. Verzier, and D. R. Hunt, “Hospital-acquired pressure ulcers: Results from the national medicare patient safety monitoring system study,” J. Am. Geriatr. Soc., vol. 60, no. 9, pp. 1603–1608, 2012, doi: 10.1111/j.1532-5415.2012.04106.x.

Z. Moore, D. Patton, S. L. Rhodes, and T. O’Connor, “Subepidermal moisture (SEM) and bioimpedance: A literature review of a novel method for early detection of pressure-induced tissue damage (pressure ulcers),” Int. Wound J., vol. 14, no. 2, pp. 331–337, 2017, doi: 10.1111/iwj.12604.

S. Patel, C. F. Knapp, J. C. Donofrio, and R. Salcido, “Temperature effects on surface pressure-induced changes in rat skin perfusion: implications in pressure ulcer development,” J. Rehabil. Res. Dev., vol. 36, no. 3, pp. 189–201, 1999.

Y. K. Jan, M. A. Jones, M. H. Rabadi, R. D. Foreman, and A. Thiessen, “Effect of wheelchair tilt-in-space and recline angles on skin perfusion over the ischial tuberosity in people with spinal cord injury,” Arch. Phys. Med. Rehabil., vol. 91, no. 11, pp. 1758–1764, 2010, doi: 10.1016/j.apmr.2010.07.227.

Y. Jan, D. Brienza, M. Boninger, and G. Brenes, “Comparison of skin perfusion response with alternating and constant pressures in people with spinal cord injury,” Spinal Cord, vol. 49, no. 1, pp. 136–141, 2011, doi: 10.1038/sc.2010.58.

Y. K. Jan, F. Liao, M. A. Jones, L. A. Rice, and T. Tisdell, “Effect of durations of wheelchair tilt-in-space and recline on skin perfusion over the ischial tuberosity in people with spinal cord injury,” Arch. Phys. Med. Rehabil., vol. 94, no. 4, pp. 667–672, 2013, doi: 10.1016/j.apmr.2012.11.019.

J. L. L. Cracowski, C. T. Minson, M. Salvat-Melis, and J. R. Halliwill, “Methodological issues in the assessment of skin microvascular endothelial function in humans,” Trends Pharmacol. Sci., vol. 27, no. 9, pp. 503–508, 2006, doi: 10.1016/j.tips.2006.07.008.

S. Hagisawa, M. Ferguson-Pell, M. Cardi, D. Miller, and S. D. Miller, “Assessment of skin blood content and oxygenation in spinal cord injured subjects during reactive hyperemia.,” J. Rehabil. Res. Dev., vol. 31, no. 1, pp. 1–14, 1994.

S. Ramli, R. Kamil, S. A. Ahmad, R. Mahmud and N. Mohtarrudin, "Trends of skin blood flow response signals for early pressure ulcer evaluation," in 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Sarawak, Malaysia, pp. 245-250, 2018, doi: 10.1109/IECBES.2018.8626632.

A. Humeau, A. Koitka, P. Abraham, J. L. Saumet, and J. P. L’Huillier, “Time-frequency analysis of laser Doppler flowmetry signals recorded in response to a progressive pressure applied locally on anaesthetized healthy rats,” Phys. Med. Biol., vol. 49, no. 5, pp. 843-857, 2004, doi: 10.1088/0031-9155/49/5/014.

Z. Li, J. Y. Leung, E. W. Tam, and A. F. Mak, “Wavelet analysis of skin blood oscillations in persons with spinal cord injury and able-bodied subjects,” Arch. Phys. Med. Rehabil., vol. 87, no. 9, pp. 1207–1212, 2006, doi: 10.1016/j.apmr.2006.05.025.

Y. Jan, B. D. Struck, R. D. Foreman, and C. Robinson, “Wavelet analysis of sacral skin blood flow oscillations to assess soft tissue viability in older adults,” Microvasc. Res., vol. 78, no. 2, pp. 162–168, 2009, doi: 10.1016/j.mvr.2009.05.004.

A. Stefanovska and M. Bracic, “Physics of the human cardiovascular system,” Contemp. Phys., vol. 40, no. 1, pp. 31–55, 2010, doi: 10.1080/001075199181693.

M. F. M. Yusof et al., “Detection of defects on weld bead through the wavelet analysis of the acquired arc sound signal,” J. Mech. Eng. Sci., vol. 10, no. 2, pp. 2031-2042, 2016, doi: 10.15282/jmes.10.2.2016.8.0192.

M. J. Geyer, Y.-K. Jan, D. M. Brienza, and M. L. Boninger, “Using wavelet analysis to characterize the thermoregulatory mechanisms of sacral skin blood flow,” J. Rehabil. Res. Dev., vol. 41, no. 6A, pp. 797–806, 2004, doi: 10.1682/jrrd.2003.10.0159.

A. N. Pavlov, A. E. Hramov, A. A. Koronovskii, E. Y. Sitnikova, V. A. Makarov, and A. A. Ovchinnikov, “Wavelet analysis in neurodynamics,” Phys. Uspekhi, vol. 55, no. 9, pp. 845–875, 2012, doi: 10.3367/UFNe.0182.201209a.0905.

G. Carolan-Rees, A. Tweddel, K. K. Naka and T. M. Griffith, “Fractal dimensions of laser doppler flowmetry time series,” Med. Eng. Phys., vol. 24, no. 1, pp. 71–76, 2002, doi: 10.1016/s1350-4533(01)00117-5.

C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc., vol. 79, no. 1, pp. 61–78, 1998, doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

M. Bracic and A. Stefanovska, “Wavelet-based analysis of human blood-flow dynamics,” Bull. Math. Biol., vol. 60, no. 5, pp. 919–935, 1998, doi: 10.1006/bulm.1998.0047.

A. Stefanovska, M. Bracic, and H. D. Kvernmo, “Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique,” IEEE Trans. Biomed. Eng., vol. 46, no. 10, pp. 1230–1239, 1999, doi: 10.1109/10.790500.

Z. Li, E. W. C. Tam, R. Y. C. Lau, K. F. So, W. Wu, and A. F. T. Mak, “Post pressure response of skin blood flow motions in anesthetized rats with spinal cord injury,” Microvasc. Res., vol. 78, no. 1, pp. 20–24, 2009, doi: 10.1016/j.mvr.2008.09.013.

Z. M. Hafizi, J. Epaarachchi, and K. T. Lau, “Wave propagation scattering due to defects on thin composite plates,” J. Mech. Eng. Sci., vol. 5, pp. 602-610, 2013, doi: 10.15282/jmes.5.2013.6.0057.

J. M. Stewart, I. Taneja, M. S. Goligorsky, and M. S. Medow, “Noninvasive measure of microvascular nitric oxide function in humans using very low-frequency cutaneous laser doppler flow spectra,” Microcirculation, vol. 14, no. 3, pp. 169–180, 2007, doi: 10.1080/10739680601139179.

Downloads

Published

2020-09-30

How to Cite

[1]
S. Ramli, R. Kamil, S. A. Ahmad, N. Mohtaruddin, and R. Mahmud, “Wavelet transform based features of skin blood flow response signal for pressure ulcer evaluation”, J. Mech. Eng. Sci., vol. 14, no. 3, pp. 7309–7318, Sep. 2020.