Failure study of the woven composite material: 2.5 D carbon fabric/ resin epoxy

Authors

  • Abderraouf Omar Gherissi Mechanical Engineering Department, College of Engineering, University of Tabuk, P.O.Box : 741, Tabuk 71491, Saudi Arabia. Laboratoire de Mecanique, Productique et Energétique (LMPE), ENSIT, Université de Tunis - Tunisia, 5 Avenue Taha Hussein, BP, 56, Bâb Manara, 1008 Tunisia, Phone: +21656351977 / +966543440530

DOI:

https://doi.org/10.15282/jmes.13.3.2019.12.0438

Keywords:

Tensile tests, Composite failure, FE modeling, Multiscale approach, 2.5 D woven carbon fabric G1151/Resin Epoxy

Abstract

In this paper an experimental analysis of the failure of a single layer woven fabric composite 2.5 D  G1151/ Resin Epoxy through a tensile tests at 0°, 45° and 90° is investigated. In addition a FE simulation of failure were elaborated through multiscale modeling method, micro then meso then macro scale. The microscale simulation was elaborated on ABAQUS standard simulation of a 3D unit cell of random fibers distribution of a single yarn. The meso scale simulation developed on MATLAB. The meso approach based to the extraction of the behavior of representative volume elementary (RVE) of the 2.5 D woven composite. The macroscale simulation was elaborated on ABAQUS standard simulation. With reference to the numerical and experimental study, the results shows a good agreement. The present investigation is an important preliminary study in process forming of single woven carbon 2.5 D composite.   

References

Young K, David H. Allen, Ramesh R. Multiscale modeling and simulation of composite materials and structures. 2008.

Schwab M, Todt M, Pettermann HE. A multiscale approach for modelling impact on woven composites under consideration of the fabric topology. Journal of Composite Materials. 2018;52: 2859–2874.

Bassam ES, Federica D, Dmitry I, Stephen RH. An iterative multiscale modelling approach for nonlinear analysis of 3D composites. International Journal of Solids and Structures. 2018; 132–133: 42-58.

Bassam ES, Dmitry I, Andrew CL, Stephen RH. Multi-scale modelling of strongly heterogeneous 3D composite structures using spatial Voronoi tessellation. Journal of the Mechanics and Physics of Solids. 2016; 88: 50-71.

Durville D, Ganghoffer JF, Lomov S, Orgéas L., Kyriakides S. Multiscale modelling of fibrous and textile materials. International Journal of Solids and Structures. 2018; 154: 1-168.

Abel C, Houman B. Numerical tools for composite woven fabric preforming. Advances in Materials Science and Engineering. 2013.

Gherissi A, Abbassi F, Ammar A, Zghal A. Numerical and experimental investigations on deep drawing of G1151 carbon fiber woven composites. Appl. Compos. Mater. 2016; 23: 461–476.

Naoki T, Yasutomo U, Yukio K, Masaru Z. Hierarchical modelling of textile composite materials and structures by the homogenization method. Modelling and Simulation in Materials Science and Engineering. 1999; 7: 207–231.

András S, József UJ. Finite element modelling of the damage and failure in fiber reinforced composites. Periodica Polytechnica Mechanical Engineering. 2002; 46: 139–158.

Okabe T, Nishikawa M, Toyoshima H. A periodic unit-cell simulation of fiber arrangement dependence on the transverse tensile failure in unidirectional carbon fiber reinforced composites. International Journal of Solids and Structures. 2011; 48:2948–2959.

Hobbiebrunken T, Hojo M, Adachi T, Jong CD, Fiedler B. Evaluation of interfacial strength in CF/epoxies using FEM and in-situ experiments. Compos. A. 2006; 37:2248–2256.

Gamesh S, Ramesh S, Mira M, Brian GF. Modelling matrix damage and fibre–matrix interfacial decohesion in composite laminates via a multi-fibre multi-layer representative volume element (M2RVE). International Journal of Solids and Structures. 2014; 51: 449-461.

Green SD, Matveev MY, Long AC, Ivanov D, Hallett SR. Mechanical modelling of 3D woven composites considering realistic unit cell geometry. Composite Structures. 2014; 118:284–293.

Kyle CW, Roberto A. Lopez-Anido, Senthil SV, Harun HB. Progressive failure analysis of three-dimensional woven carbon composites in single-bolt, double-shear bearing, Composites Part B. 2016; 84:266-276.

Hashin Z. Failure criteria for unidirectional fiber composites. J. Appl. Mech. 1980; 47: 329-334.

Matzenmiller A, Lubliner J, Taylor R. A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 1995;20.

Abbassi F, Gherissi A, Zghal A, Mistou S, Alexis J. Micro-scale modeling of carbon-fiber reinforced thermoplastic materials. Applied Mechanics and Materials. 2012; 146:1-11.

Paiva JMF, b, Mayer S, Rezende MC. Comparison of tensile strength of different carbon fabric reinforced epoxy composites. Materials Research. 2006; 9: 83-89.

ASTM Standard D3039. Standard test method for tensile properties of polymer matrix composite materials. West Conshohocken, PA. ASTM International. 2002.

Xiao X, Hua T, Li L, Wang J. Geometrical modeling of honeycomb woven fabric architecture. Textile Research Journal. 2015; 85:1651–1665.

Kurbak A. Geometrical models for weft-knitted spacer fabrics. Textile Research Journal. 2017; 87:409–423.

Kurbak A. Models for basic warp knitted fabrics Part III: the two guide bar fabrics (Double Tricot, Locknit, Reverse Locknit, Satin, Sharkskin). Textile Research Journal. 2019; 89: 1917–1937.

ElAgamy N, Laliberté J. Historical development of geometrical modelling of textiles reinforcements for polymer composites: A review. Journal of Industrial Textiles. 2016; 45: 556–584.

Zhu HX, Fan TX, Zhang D. Composite materials with enhanced dimensionless Young’s modulus and desired Poisson’s ratio. Scientific Reports 2015; 5.

Akkerman R, de Vries RS. Thermomechanical properties of woven fabric composites. International Conference on Fibre Reinforced Composites FRC`98.1998:422-429.

Giorgio I, Angew Z. Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures. Journal of Applied Mathematics and Physics. 2016; 67: 95.

Dai S, Cunningham PR. Multi-scale damage modelling of 3D woven composites under uni-axial tension. Composite Structures. 2016; 142: 298–312.

Zhai J, Zeng T, Xu G, Wang Z Cheng S, Fang D. A multi-scale finite element method for failure analysis of three-dimensional braided composite structures. Composites Part B: Engineering. 2017; 110 : 2017: 476-486.

Kirane K, Salviato M, Bažant ZP. Microplane triad model for simple and accurate prediction of orthotropic elastic constants of woven fabric composites. Journal of Composite Materials. 2015; 50: 1247-1260.

Döbrich O, Gereke T, Cherif C. Modeling the mechanical properties of

textile-reinforced composites with a near micro-scale approach. Composite Structures. 2016; 135: 1-7.

Fu X, Ricci S, Bisagni C. Multi-scale analysis and optimization of three-dimensional woven composite structures combining response surface method and genetic algorithms. CEAS Aeronaut J. 2017; 8:129–141.

K. Supar and H. Ahmad. Multi-holes configurations of woven fabric kenaf composite plates: experimental works and 2-D modelling. Journal of Mechanical Engineering and Sciences. 2018; 12: 3539-3547.

S. B. Rayhan. A comprehensive study on the buckling behaviour of woven composite plates with major aerospace cutouts under uniaxial loading. Journal of Mechanical Engineering and Sciences. 2019; 13: 4756-4776.

S. D. Fanourgakis, D. E. Mazarakos, V. Kostopoulos. Fluid–structure interaction study for the DIFIS system’s composite riser tube. Journal of Mechanical Engineering and Sciences. 2018; 12: 4243-4262.

Downloads

Published

2019-09-27

How to Cite

[1]
A. O. Gherissi, “Failure study of the woven composite material: 2.5 D carbon fabric/ resin epoxy”, J. Mech. Eng. Sci., vol. 13, no. 3, pp. 5390–5406, Sep. 2019.