Phytoremediation of Heavy Metal Contaminated Groundwater Using Tropical Wetland Plants: Lepironia articulata and Typha angustifolia

Authors

  • Baiyang Jiang Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Gambang, Pahang, Malaysia
  • N. H. Sa'adon Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Gambang, Pahang, Malaysia
  • S. I. Doh Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Gambang, Pahang, Malaysia
  • S. Sulaiman Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Gambang, Pahang, Malaysia
  • A. S. Abdul Razak Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Gambang, Pahang, Malaysia

DOI:

https://doi.org/10.15282/construction.v5i1.12168

Keywords:

Phytoremediation , Heavy metals , Constructed wetlands, Lepironia articulata, Typha angustifolia

Abstract

This study examines the efficacy of Lepironia articulata and Typha angustifolia in horizontal subsurface flow constructed wetlands (HSSF-CWs) for removing organic pollutants and heavy metals from contaminated water over a 10-week monitoring period. For Lepironia articulata, the average COD, BOD₅, Pb, Zn, Fe, and Cu concentrations were 38.2 mg/L, 13.09 mg/L, 0.0416 mg/L, 0.0368 mg/L, 1.1539 mg/L, and 0.0096 mg/L, with corresponding removal efficiencies of 31.02%, 22.89%, 11.18%, 19.87%, 23.18%, and 22.53%, respectively. For Typha angustifolia, they were 50.7 mg/L, 11.43 mg/L, 0.0289 mg/L, 0.0163 mg/L, 0.9795 mg/L, and 0.0095 mg/L, with removal efficiencies of 8.24%, 38.34%, 37.16%, 57.41%, 32.83%, and 34.08%, respectively. FESEM-EDX imaging revealed distinct accumulation patterns, as Lepironia articulata tended to sequester more metals in its leaves, whereas Typha angustifolia retained a greater proportion in the stem. These findings highlight the complementary strengths of both macrophytes in mitigating organic and metal contaminants through wetland-based treatment.

Downloads

Download data is not yet available.

References

[1] A. Ismanto, T. Hadibarata, S. Widada, E. Indrayanti, D. H. Ismunarti, N. Safinatunnajah, et al., “Groundwater contamination status in Malaysia: level of heavy metal, source, health impact, and remediation technologies,” Bioprocess and Biosystems Engineering, vol. 46, no. 3, pp. 467–482, 2023.

[2] A. R. A. Syukor, Z. N. Azzimah, R. Norbaizurah, and S. Suryati, “Assessment of physico-chemical analysis of ground water quality in rural area: Kampung Chendrawasih, Pekan Pahang for drinking purpose,” in Proceedings of International Conference on Knowledge Transfer (ICKT’15), Putrajaya Marriott Hotel, Malaysia, pp. 223–228, 2015.

[3] P. B. Angon, M. S. Islam, A. Das, N. Anjum, A. Poudel and S. A. Suchi, “Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain,” Heliyon, vol. 10, no. 7, p. e28357, 2024.

[4] T. A. Saleh, M. Mustaqeem and M. Khaled, “Water treatment technologies in removing heavy metal ions from wastewater: A review,” Environmental Nanotechnology, Monitoring & Management, vol. 17, p.100617, 2022.

[5] R. Shrestha, S. Ban, S. Devkota, S. Sharma, R. Joshi, A. P. Tiwari, et al., “Technological trends in heavy metals removal from industrial wastewater: A review,” Journal of Environmental Chemical Engineering, vol. 9, no. 4, p. 105688, 2021.

[6] S. Kataki, S. Chatterjee, M. G. Vairale, S. Sharma, S. K. Dwivedi, and D. K. Gupta, “Constructed wetland, an eco-technology for wastewater treatment: A review on various aspects of microbial fuel cell integration, low temperature strategies and life cycle impact of the technology,” Renewable and Sustainable Energy Reviews, vol. 148, p. 111261, 2021.

[7] S. F. Ahmed, M. Mofijur, S. Nuzhat, A. T. Chowdhury, N. Rafa, M. A. Uddin, et al., “Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater,” Journal of Hazardous Materials, vol. 416, p. 125912, 2021.

[8] F. Younas, N. K. Niazi, I. Bibi, M. Afzal, K. Hussain, M. Shahid, et al., “Constructed wetlands as a sustainable technology for wastewater treatment with emphasis on chromium-rich tannery wastewater,” Journal of Hazardous Materials, vol. 422, p. 126926, 2022.

[9] A. S. Abd Razak, N. Rahman, N. A. Zamri, S. Sulaiman, N. A. A. Burhanudin, and E. Abd Aziz., “COD, BOD and heavy metal removal from ground water treatment by using WASRA System: A case study on Universiti Malaysia Pahang Mosque.,” Advances in Environmental Biology, vol. 9, no. 1, pp. 26–29, 2015.

[10] T. Kamilya, A. Majumder, M. K. Yadav, S. Ayoob, S. Tripathy, and A. K. Gupta, “Nutrient pollution and its remediation using constructed wetlands: Insights into removal and recovery mechanisms, modifications and sustainable aspects,” Journal of Environmental Chemical Engineering, vol. 10, no. 3, p. 107444, 2022.

[11] S. Haq, A. A. Bhatti, Z. A. Dar, and S. A. Bhat, Phytoremediation of heavy metals: An eco-friendly and sustainable approach. Springer International Publishing, 2020.

[12] Sabreena, S. Hassan, S. A. Bhat, V. Kumar, B. A. Ganai, and F. Ameen, “Phytoremediation of heavy metals: An indispensable contrivance in green remediation technology,” Plants, vol. 11, no. 9, p. 1255, 2022.

[13] M. A. Oyuela Leguizamo, W. D. Fernández Gómez, and M. C. G. Sarmiento, “Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands — A review,” Chemosphere, vol. 168, pp. 1230–1247, 2017.

[14] P. Sharma, “Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update,” Bioresource Technology, vol. 328, p. 124835, 2021.

[15] N. H. A. L. Sbani, S. R. S. Abdullah, M. Idris, H. A. Hasan, M. I. E. Halmi, O. H. Jehawi, et al., “PAH-degrading rhizobacteria of Lepironia articulata for phytoremediation enhancement,” Journal of Water Process Engineering, vol. 39, p. 2021.

[16] Y. Lei, L. Carlucci, H. Rijnaarts, and A. Langenhoff, “Phytoremediation of micropollutants by Phragmites australis, Typha angustifolia, and Juncus effuses,” International journal of phytoremediation, vol. 25, no. 1, pp. 82-88, 2023

[17] N. H. Al-Sbani, S. R. S. Abdullah, M. Idris, H. A. Hasan, O. H. Jehawi, and N. Ismail, “Sub-surface flow system for PAHs removal in water using Lepironia articulate under greenhouse conditions,” Ecological Engineering, vol. 87, pp. 1-8, 2016.

[18] A. R. Abdul Syukor and S. Suryati, “Treatment of Industrial Wastewater using Eichornia Crassipes, Pistia Stratiotes and Salvinia Molesta in Phytogreen System,” Energy Education Science and Technology Part A: Energy Science and Research, vol. 32, no. 1, pp. 339–346, 2014.

[19] S. F. Ahmed, P. S. Kumar, M. R. Rozbu, A. T. Chowdhury, S. Nuzhat, N. Rafa, et al., “Heavy metal toxicity, sources, and remediation techniques for contaminated water and soil,” Environmental Technology & Innovation, vol. 25, p. 102114, 2022.

[20] A. R. Abdul Syukor, A. W. Zularisam, M. I. M. Said, S. Suryati, and A. H. Hasmanie, “The effectiveness of phytogreen system in phytoremediation and bioremediation process to enhance the quality of domestic wastewater,” in IWA Malaysia Young Water Professionals Conference, Kuala Lumpur, Malaysia, vol. 65, no. 3, pp. 1–11, 2015.

[21] A. R. Abdul Syukor, A. W. Zularisam, I. Zakaria, M. S. Mohd. Ismid, S. Sulaiman, H.A. Halim, et al., “Potential of aquatic plant as phytoremediator for treatment of petrochemical wastewater in Gebeng Area, Kuantan,” Advances in Environmental Biology, vol. 7, no. 12, pp. 3808–3814, 2013.

[22] A. A. Syukor, A. W. Zularisam, Z. Ideris, M. M. Ismid, H. Nakmal, S. Sulaiman, et al., “Performance of phytogreen zone for BOD5 and SS removal for refurbishment conventional oxidation pond in an integrated phytogreen system,” International Journal of Environmental, Earth Science and Engineering, vol. 8, no. 3, pp. 11–16, 2014.

[23] A. R. Abdul Syukor, “Performance of conventional oxidation pond using integrated phytogreen system by aquatic plants for achieving standard an effluent,” Universiti Malaysia Pahang, 2020.

[24] D. Arivukkarasu and R. Sathyanathan, “A sustainable green solution to domestic sewage pollution: Optimizing floating wetland treatment with different plant combinations and growth media,” Water Cycle, vol. 5, pp. 185–198, 2024.

[25] A. R. Abdul Syukor, A. W. Zularisam, Z. Ideris, M. S. Mohd. Ismid, S. Suryati, and A. H. Hasmanie, “Treatment of industrial wastewater at Gebeng Area using Eichornia Crassipes Sp.(Water Hyacinth), Pistia Stratiotes Sp.(Water Lettuce) and Salvinia Molesta Sp.(Giant Salvinia),” Advances in Environmental Biology, vol. 7, no. 12, pp. 3802–3808, 2013.

[26] W. Xu, Y. Jin, and G. Zeng, “Introduction of heavy metals contamination in the water and soil: a review on source, toxicity and remediation methods,” Green Chemistry Letters and Reviews, vol. 17, no. 1, p. 2404235, 2024.

[27] M. M. Uddin, M. C. M. Zakeel, J. S. Zavahir, F. M. M. T. Marikar, and I. Jahan, “Heavy metal accumulation in rice and aquatic plants used as human food: A general review,” Toxics, vol. 9, no. 12, p. 360, 2021.

[28] K. H. Hama Aziz, F. S. Mustafa, K. M. Omer, S. Hama, R. F. Hamarawf, and K. O. Rahman, “Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: A review,” RSC advances, vol. 13, no. 26, pp. 17595-17610, 2023.

[29] D. Majid, M. Al Kholif, M. N. Arif, J. Sutrisno, and J. W. Zhang, “Eco-friendly solutions for urban wastewater: evaluating constructed wetlands and filtration methods,” Advances in Environmental Technology, vol. 11, no. 2, pp. 182–194, 2025.

[30] K. K. Lawal, I. K. Ekeleme, C. M. Onuigbo, V. O. Ikpeazu, and S. O. Obiekezie, “A review on the public health implications of heavy metals,” World Journal of Advanced Research and Reviews, vol. 10, no. 3, pp. 255–265, 2021.

[31] F. Ismail, A. S. A. Razak, A. Z. A. M. Termizi, M. A. S. Nasarudin, and S. Sulaiman, “Enhanced phytoremediation of domestic wastewater using lepironia articulata, monochoria vaginalis and typha angustifolia: Comparative performance and efficacy,” Construction, vol. 4, no. 2, pp. 244–254, 2024.

[32] T. Sricoth, W. Meeinkuirt, J. Pichtel, P. Taeprayoon, and P. Saengwilai, “Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel,” Environmental Science and Pollution Research, vol. 25, no. 6, pp. 5344–5358, 2018.

[33] L. T. Maranho and M. P. Gomes, “Morphophysiological adaptations of aquatic macrophytes in wetland-based sewage treatment systems: Strategies for resilience and efficiency under environmental stress,” Plants, vol. 13, no. 20, p. 2870, 2024.

[34] Q. Wang, Y. Hu, H. Xie, and Z. Yang, “Constructed wetlands: A review on the role of radial oxygen loss in the rhizosphere by macrophytes,” Water, vol. 10, no. 6, p. 678, 2018.

[35] S. K. Malyan, S. Yadav, V. Sonkar, V. C. Goyal, O. Singh, and R. Singh, “Mechanistic understanding of the pollutant removal and transformation processes in the constructed wetland system,” Water Environment Research, vol. 93, no. 10, pp. 1882-1909, 2021.

Downloads

Published

2025-06-10

Issue

Section

Articles

How to Cite

[1]
B. Jiang, N. H. Sa'adon, S. I. Doh, S. Sulaiman, and A. S. Abdul Razak, “Phytoremediation of Heavy Metal Contaminated Groundwater Using Tropical Wetland Plants: Lepironia articulata and Typha angustifolia”, Constr., vol. 5, no. 1, pp. 87–95, Jun. 2025, doi: 10.15282/construction.v5i1.12168.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)