Morphological changes of ZnO nanostructures upon addition of Tannic Acid

Authors

  • Aqilah Kamaruzaman Innovative Manufacturing, Mechatronics, Sports (Imams) Lab, Faculty of Manufacturing Mechatronics Engineering Technology, Universiti Malaysia Pahang, 26600, Pekan, Pahang, Malaysia
  • Nurul Akmal Che Lah Innovative Manufacturing, Mechatronics, Sports (Imams) Lab, Faculty of Manufacturing Mechatronics Engineering Technology, Universiti Malaysia Pahang, 26600, Pekan, Pahang, Malaysia

DOI:

https://doi.org/10.15282/jmmst.v5i1.5868

Keywords:

Zinc Oxide, Tannic Acid, Green Synthesis, Hydrothermal, TEM

Abstract

Due to their potential as a good semiconductor, Zinc Oxide nanostructures (ZnO) have received abundant of interest. In this analysis, ZnO nanostructures are synthesized by a hydrothermal process that uses a green method of synthesis completely aided by Tannic Acid (TA). The mean diameter of ZnO nanostructures are observed to increase with addition of TA due to the aggregation that occurred from the influenced of acidic medium. The morphological properties are discussed based on the TEM images which indicated the average size of 8nm for ZnO NPs and 18-23nm for ZnO-TA nanostructures obtained, respectively. 

References

P. Chaudhary, P. Singh, and V. Kumar, "Synthesis and characterisation of pure ZnO and La-doped ZnO (Zn0.98La0.02O) films via novel sol-gel screen- printing method," Optik, vol. 158, pp. 376-381, 2018/04/01/ 2018.

J.-Q. Wen, J.-M. Zhang, and Z.-Q. Li, "Structural and electronic properties of Y doped ZnO with different Y concentration," Optik, vol. 156, pp. 297-302, 2018/03/01/ 2018.

P. J. P. Espitia, N. d. F. F. Soares, J. S. d. R. Coimbra, N. J. de Andrade, R. S. Cruz, and E. A. A. Medeiros, "Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications," Food and Bioprocess Technology, vol. 5, pp. 1447-1464, 2012.

L. He, Y. Liu, A. Mustapha, and M. Lin, "Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum," Microbiol Res, vol. 166, pp. 207-15, Mar 20 2011.

N. Jones, B. Ray, K. T. Ranjit, and A. C. Manna, "Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms," FEMS Microbiol Lett, vol. 279, pp. 71-6, Feb 2008.

A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, et al., "Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism," Nanomicro Lett, vol. 7, pp. 219-242, 2015.

Z. L. Wang, "ZnO Nanostructure " 2004.

P. Basnet, T. Inakhunbi Chanu, D. Samanta, and S. Chatterjee, "A review on bio-synthesised zinc oxide nanoparticles using plant extracts as reductants and stabilising agents," Journal of Photochemistry and Photobiology B: Biology, vol. 183, pp. 201-221, 2018/06/01/ 2018.

M. Joulaei, K. Hedayati, and D. Ghanbari, "Investigation of magnetic, mechanical and flame retardant properties of polymeric nanocomposites: Green synthesis of MgFe2O4 by lime and orange extracts," Composites Part B: Engineering, vol. 176, p. 107345, 2019/11/01/ 2019.

P. Mahajan, A. Sharma, B. Kaur, N. Goyal, and S. Gautam, "Green synthesised (Ocimum sanctum and Allium sativum) Ag-doped cobalt ferrite nanoparticles for antibacterial application," Vacuum, vol. 161, pp. 389-397, 2019/03/01/ 2019.

K. C. Suresh, S. Surendhiran, P. Manoj Kumar, E. Ranjth Kumar, Y. A. S. Khadar, and A. Balamurugan, "Green synthesis of SnO2 nanoparticles using Delonix elata leaf extract: Evaluation of its structural, optical, morphological and photocatalytic properties," SN Applied Sciences, vol. 2, p. 1735, 2020/09/25 2020.

A. E. D. Mahmoud, "Nanomaterials: Green Synthesis for Water Applications," in Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, O. V. Kharissova, L. M. T. Martínez, and B. I. Kharisov, Eds., ed Cham: Springer International Publishing, 2020, pp. 1-21.

T. Ahmad, "Reviewing the Tannic Acid Mediated Synthesis of Metal Nanoparticles," Journal of Nanotechnology, vol. 2014, pp. 1-11, 2014.

A. Krol, P. Pomastowski, K. Rafinska, V. Railean-Plugaru, and B. Buszewski, "Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism," Adv Colloid Interface Sci, vol. 249, pp. 37-52, Nov 2017.

N. Padmavathy and R. Vijayaraghavan, "Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study," Sci Technol Adv Mater, vol. 9, p. 035004, Jul 2008.

R. Wahab, S. G. Ansari, Y. S. Kim, H. K. Seo, G. S. Kim, G. Khang, et al., "Low temperature solution synthesis and characterisation of ZnO nano-flowers," Materials Research Bulletin, vol. 42, pp. 1640-1648, 2007.

O. V. Kharissova, H. V. Dias, B. I. Kharisov, B. O. Perez, and V. M. Perez, "The greener synthesis of nanoparticles," Trends Biotechnol, vol. 31, pp. 240-8, Apr 2013.

N. A. Che Lah, N. Mohamad, M. M. Saari, and M. R. Johan, "Nanoscopic tannic acid - ZnO colloid: low temperature synthesis and the influence of pH on the aggregates," Materials Research Express, vol. 6, p. 065007, 2019/03/06 2019.

B. Michen, C. Geers, D. Vanhecke, C. Endes, B. Rothen-Rutishauser, S. Balog, et al., "Avoiding drying-artifacts in transmission electron microscopy: Characterising the size and colloidal state of nanoparticles," Scientific reports, vol. 5, pp. 9793-9793, 2015.

L. C. S. Lopes, L. M. Brito, T. T. Bezerra, K. N. Gomes, F. A. D. A. Carvalho, M. H. Chaves, et al., "Silver and gold nanoparticles from tannic acid: synthesis, characterisation and evaluation of antileishmanial and cytotoxic activities," Anais da Academia Brasileira de Ciências, vol. 90, pp. 2679-2689, 2018.

Downloads

Published

19-02-2021

How to Cite

Kamaruzaman, A., & Che Lah, N. A. (2021). Morphological changes of ZnO nanostructures upon addition of Tannic Acid. Journal of Modern Manufacturing Systems and Technology, 5(1), 23–26. https://doi.org/10.15282/jmmst.v5i1.5868

Issue

Section

Articles