The Simulation of Biogas Combustion in A Mild Burner

Authors

  • M. M. Noor Faculty of Mechanical Engineering, University of Malaysia Pahang, Malaysia
  • Andrew P. Wandel Computational Engineering and Science Research Centre, School of Mechanical and Electrical Engineering, University of Southern Queensland (USQ), Australia
  • Talal Yusaf National Center for Engineering in Agriculture, USQ, Australia

DOI:

https://doi.org/10.15282/jmes.6.2014.27.0097

Keywords:

Combustion; computational fluid dynamics; bluff-body; low calorific value gas; MILD burner; biogas.

Abstract

This paper discusses the design and development of moderate and intense low oxygen dilution (MILD) combustion burners, including details of the computational fluid dynamics process, step-by-step from designing the model until post-processing. A 40 mm diameter bluff-body burner was used as the flame stabilizer. The fuel nozzle was placed in the center with a diameter of 1mm and an annular air nozzle with an opening size of 1,570 mm2, and four EGR pipes were used. Non-premixed combustion with a turbulent realizable k-epsilon was used in the simulation. The fuel used is low calorific value gas (biogas). The synthetic biogas was a mixture of 60% methane and 40% carbon dioxide. The simulation was successfully achieved during the MILD regime where the ratio of maximum-to-average temperature was less than the required 23%.

References

Acon, C., Sala, J., & Blanco, J. (2007). Investigation on the design and optimization of a low nox-co emission burner both experimentally and through cfd simulations. Energy and Fuels, 21(1), 42-58.

Alfriend, K., Vadali, S. R., Gurfil, P., How, J., & Breger, L. (2010). Spacecraft formation flying: Dynamics, control, and navigation (Vol. 2): Butterworth-Heinemann.

Arghode, V. K., & Gupta, A. K. (2011). Development of high intensity cdc combustor for gas turbine engines. Applied Energy, 88(3), 963-973.

Baukal Jr, C. E., Gershtein, V., & Li, X. J. (2000). Computational fluid dynamics in industrial combustion. New York: CRC press.

Bumpus, S. R. J. (2002). Experimental setup and testing of fiber reinforced composite structures. (Master), University of Victoria.

Cavaliere, A., & Joannon, D. M. (2004). Mild combustion. Progress in Energy and Combustion Science, 30, 329-366.

Chen, L., Yong, S. Z., & Ghoniem, A. F. (2012). Oxy-fuel combustion of pulverized coal: haracterization, fundamentals, stabilization and cfd modeling. Progress in Energy and Combustion Science, 38(2), 156-214.

Chen, Q.-S., Wegrzyn, J., & Prasad, V. (2004). Analysis of temperature and pressure changes in liquefied natural gas (lng) cryogenic tanks. Cryogenics, 44(10), 701-709.

Chui, E., & Raithby, G. (1993). Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method. Numerical Heat Transfer, 23(3), 269-288.

Colorado, A., Herrera, B., & Amell, A. (2010). Performance of a flameless combustion furnace using biogas and natural gas. Bioresource Technology, 101(7), 2443- 2449.

Dally, B. B., Shim, S. H., Craig, R. A., Ashman, P. J., & Szegö, G.G. (2010). On the burning of sawdust in a mild combustion furnace. Energy & Fuels, 24(6), 3462-3470.

Davidson, D. L. (2002). The role of computational fluid dynamics in process industries. The Bridge, 32(4), 9-14.

Devi, R., Saxena, P., Walter, B., Record, B., & Rajendran, V. (2004). Pressure reduction in intake system of a turbocharged-inter cooled di diesel engine using cfd methodology: SAE Technical Paper.

Duwig, C., Stankovic, D., Fuchs, L., Li, G., & Gutmark, E. (2007). Experimental and numerical study of flameless combustion in a model gas turbine combustor. Combustion Science and Technology, 180(2), 279-295.

Fiveland, W. (1984). Discrete-ordinates solutions of the radiative transport equation for rectangular enclosures. Journal of Heat Transfer, 106(4), 699-706.

Fletcher, D., Haynes, B., Christo, F., & Joseph, S. (2000). A cfd based combustion model of an entrained flow biomass gasifier. Applied Mathematical Modelling, 24(3), 165-182.

Fluent Inc. (2012). Fluent 14.5 user's guide.

Hairuddin, A. A., Yusaf, T. F., & Wandel, A. P. (2011). Predicting the combustion behaviour of a diesel hcci engine using a zero-dimensional single-zone model. Paper presented at the Proceedings of the Australian Combustion Symposium 2011, Newcastle, Australia.

Hasegawa, T., Mochida, S., & Gupta, A. (2002). Development of advanced industrial furnace using highly preheated combustion air. Journal of propulsion and power, 18(2), 233-239.

Hottel, H. C., & Sarofim, A. F. (1967). Radiative transfer. New York: McGraw Hill.

IEA. (2009). World energy outlook. Paris: International Energy Agency.

Jones, W., & Launder, B. (1972). The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 15(2), 301-314.

Katsuki, M., & Hasegawa, T. (1998). The science and technology of combustion in highly preheated air. Symposium (International) on combustion, 27(2), 3135-3146.

Keramiotis, C., & Founti, M. A. (2013). An experimental investigation of stability and operation of a biogas fueled porous burner. Fuel, 103, 278-284.

Khelil, A., Naji, H., & Loukarfi, L. (2007). Numerical study of swirling confined nonpremixed flames with determination of pollutant emissions. International Review of Mechanical Engineering, 1(6), 618-627.

Launder, B., & Sharma, B. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in heat and mass transfer, 1(2), 131-137.

Launder, B. E., & Spalding, D. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289.

Li, P., Mi, J., Dally, B. B., Wang, F., Wang, L., et. Al. (2011). Progress and recent trend in mild combustion. Science China Technological Sciences, 54(2), 255-269.

Lindberg, E., Hörlin, N.-E., & Göransson, P. (2013). An experimental study of interior vehicle roughness noise from disc brake systems. Applied Acoustics, 74(3), 396-406.

Maczulak, A. (2010). Renewable energy: Sources and methods. New York: Facts on File Inc.

Majda, A., & Sethian, J. (1985). The derivation and numerical solution of the equations for zero mach number combustion. Combustion Science and Technology, 42(3-4), 185-205.

Najiha, M. A., Rahman, M. M., Kamal, M., Yusoff, A. R., & Kadirgama, K. (2012). Mql flow analysis in end milling processes: A computational fluid dynamics approach. Journal of Mechanical Engineering and Sciences, 3, 340-345.

Noor, M., Hairuddin, A. A., Wandel, A. P., & Yusaf, T. (2012). Modelling of nonpremixed turbulent combustion of hydrogen using conditional moment closure method. IOP Conference Series: Materials Science and Engineering, 36, 1-17.

Noor, M., Wandel, A. P., & Yusaf, T. (2012). A review of mild combustion and open furnace design consideration. International Journal of Automotive and Mechanical Engineering, 6(1), 730-754.

Noor, M., Wandel, A. P., & Yusaf, T. (2013). The analysis of recirculation zone and ignition position of non-premixed bluff-body for biogas mild combustion. Paper presented at the Proceedings of the 2nd International Conference of Mechanical Engineering Research, Malaysia.

Noor, M. M., Wandel, A. P., & Yusaf, T. (2013a). Analysis of recirculation zone and ignition position of non-premixed bluff-body for biogas mild combustion. International Journal of Automotive and Mechanical Engineering, 8, 1176-1186.

Noor, M. M., Wandel, A. P., & Yusaf, T. (2013b). Design and development of mild combustion burner. Journal of Mechanical Engineering and Sciences, 5, 662-676.

Peters, N. (2004). Turbulent combustion. UK: Cambridge University Press.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in fortran. UK: Cambridge University Press.

Rahimi, M., Khoshhal, A., & Shariati, S. M. (2006). Cfd modelling of a boilerstubes rupture. Applied Thermal Engineering, 26, 2192-2200.

Ramasamy, D., Noor, M. M., Kadirgama, K., Mahendran, S., Redzuan, A., Sharifian, S.A., & Buttsworth, D. R. (2009). Validation of drag estimation on a vehicle body using cfd. Paper presented at the Europe Power and Energy Systems, Spain.

Rehm, R., & Baum, H. (1978). The equation of motion for thermally driven bouyant flows. N. B. S. J. Res, 83, 297-308.

Salunkhe, D., Rai, R., & Borkar, R. (2012). Biogas technology. International Journal of Engineering Science and Technology, 4(12), 4934-4940.

Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181-189.

Shih, T.-H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-ϵ eddy viscosity model for high reynolds number turbulent flows Computers & Fluids, 24(3), 227-238.

Smith, T., Shen, Z., & Friedman, J. (1982). Evaluation of coefficients for the weighted sum of gray gases model. Journal of Heat Transfer, 104(4), 602-608.

Soufiani, A., & Djavdan, E. (1994). A comparison between weighted sum of gray gases and statistical narrow-band radiation models for combustion applications. Combustion and Flame, 97(2), 240-250.

Tsuji, H., Gupta, A., Hasegawa, T., Katsuki, M., Kishimoto, K., & Morita, M. (2003). High temperature air combustion, from energy conservation to pollution reduction. Boca Raton, FL: CRC Press.

Veríssimo, A., Rocha, A., & Costa, M. (2013). Importance of the inlet air velocity on the establishment of flameless combustion in a laboratory combustor. Experimental Thermal and Fluid Science, 44, 75-81.

Wandel, A. P. (2011). A stochastic micro mixing model based on the turbulent diffusion length scale. Paper presented at the Australia Combustion Symposium, Newcastle, Australia.

Wandel, A. P. (2012). Extinction precursors in turbulent sprays. Paper presented at the International Symposium on Combustion, Poland.

Wandel, A. P., Smith, N. S., & Klimenko, A. (2003). Implementation of multiple mapping conditioning for single conserved scalar Computational fluid dynamics 2002 (pp. 789-790): Springer.

Wünning, J. (1991). Flammenlose oxidation von brennstoffmithochvorgewärmterluft. ChemieIngenieurTechnik, 63(12), 1243-1245.

Yeoh, G. H., & Yuen, K. K. (2009). Computational fluid dynamics in fire engineering: Theory, modelling and practice: Butterworth-Heinemann.

Yusaf, T., Noor, M., & Wandel, A. P. (2013). Mild combustion: The future for lean and clean combustion. Paper presented at the Proceedings of the 2nd International

Conference of Mechanical Engineering Research (ICMER 2013), Malaysia.

Downloads

Published

2014-06-30

How to Cite

[1]
M. M. Noor, Andrew P. Wandel, and Talal Yusaf, “The Simulation of Biogas Combustion in A Mild Burner”, J. Mech. Eng. Sci., vol. 6, no. 1, pp. 995–1013, Jun. 2014.

Issue

Section

Article