Nanofluid Properties for Forced Convection Heat Transfer: An Overview

Authors

  • W.H. Azmi Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
  • K.V. Sharma Department of Mechanical Engineering, JNTUH College of Engineering, Manthani, 505212, Andhra Pradesh, India
  • Rizalman Mamat Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
  • Shahrani Anuar Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia

DOI:

https://doi.org/10.15282/jmes.4.2013.4.0037

Keywords:

Forced convection; heat transfer enhancement; nanofluid; thermal conductivity; viscosity

Abstract

Nanofluids offer a significant advantage over conventional heat transfer fluids and consequently, they have attracted much attention in recent years. The engineered suspension of nano-sized particles in a base liquid alters the properties of these nanofluids. Many researchers have measured and modeled the thermal conductivity and viscosity of nanofluids. The estimation of forced convective heat transfer coefficients is done through experiments with either metal or nonmetal solid particles dispersed in water. Regression equations are developed for the determination of the thermal conductivity and viscosity of nanofluids. The parameters influencing the decrease in convection heat transfer, observed by certain investigators, is explained.

References

Avsec, J. (2008). The combined analysis of phonon and electron heat transfer mechanism on thermal conductivity for nanofluids. International Journal of Heat and Mass Transfer, 51(19-20), 4589-4598.

Batchelor, G. K. (1977). Effect of Brownian-motion on bulk stress in a suspension of spherical-particles. Journal of Fluid Mechanics, 83(1), 97-117.

Beck, M., Yuan, Y., Warrier, P., & Teja, A. (2009). The effect of particle size on the thermal conductivity of alumina nanofluids. Journal of Nanoparticle Research, 11(5), 1129-1136.

Brinkman, H. C. (1952). The viscosity of concentrated suspensions and solutions. Journal of Chemical Physics, 20(4), 571-581.

Chon, C. H., & Kihm, K. D. (2005). Thermal conductivity enhancement of nanofluids by brownian motion. Journal of Heat Transfer, 127(8), 810.

Chon, C. H., Kihm, K. D., Lee, S. P., & Choi, S. U. S. (2005). Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters, 87(15), 1531071-1531073.

Das, S. K., Putra, N., Thiesen, P., & Roetzel, W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer, 125(4), 567-574.

Duangthongsuk, W., & Wongwises, S. (2009). Measurement of temperature-dependent thermal conductivity and viscosity of TiO2 - water nanofluids. Experimental Thermal and Fluid Science, 33(4), 706-714.

Duangthongsuk, W., & Wongwises, S. (2010). An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. International Journal of Heat and Mass Transfer, 53(1-3), 334-344.

Eastman, J. A., Choi, S. U. S., Li, S., Thompson, L. J., & Lee, S. (1997). Enhanced thermal conductivity through the development of nanofluids. Proc. Symposium Nanophase and Nanocomposite Materials II, Boston, MA, Materials Research Society.

Hamilton, R. L., & Crosser, O. K. (1962). Thermal Conductivity of Heterogeneous Two Component Systems. I & EC Fundamentals, 1, 187–191.

He, Y., Jin, Y., Chen, H., Ding, Y., Cang, D., & Lu, H. (2007). Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. International Journal of Heat and Mass Transfer, 50(11-12), 2272-2281.

Heris, S. Z., Etemad, S. G., & Nasr Esfahany, M. (2006). Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer, 33(4), 529-535.

Hong, J., Kim, S. H., & Kim, D. (2007). Effect of laser irradiation on thermal conductivity of ZnO. Journal of Physics, 59, 301–304.

Hwang, K. S., Jang, S. P., & Choi, S. U. S. (2009). Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. International Journal of Heat and Mass Transfer, 52(1-2), 193-199.

Jang, S. P., & Choi, S. U. S. (2007). Effects of Various parameters on nanofluid thermal conductivity. Journal of Heat Transfer, 129(5), 617-623.

Koo, J., & Kleinstreuer, C. (2005). Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. International Communications in Heat and Mass Transfer, 32(9), 1111-1118.

Lee, J. H., Hwang, K. S., Jang, S. P., Lee, B. H., Kim, J. H., Choi, S. U. S., & Choi, C. J. (2008). Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. International Journal of Heat and Mass Transfer, 51(11-12), 2651-2656.

Lee, S., Choi, S. U. S., Li, S., & Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121(2), 280-289.

Lee, S. W., Park, S. D., Kang, S., Bang, I. C., & Kim, J. H. (2011). Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. International Journal of Heat and Mass Transfer, 54(1-3), 433-438.

Maïga, S. E. B., Nguyen, C. T., Galanis, N., Roy, G., Maré, T., & Coqueux, M. (2006). Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension. International Journal of Numerical Methods for Heat and Fluid Flow, 16(3): 275–292.

Masuda, H., Ebata, A., Teramae, K., & Hishinuma, N. (1993). Alteration of thermal conductivity and viscosity of liquid by dispersing ultra fine particles. Netsu Bussei, 4(4), 227–233.

Maxwell, J. C. (1904). A treatise on electricity and magnetism. Cambridge, U.K.: Oxford University Press.

Mintsa, H. A., Roy, G., Nguyen, C. T., & Doucet, D. (2009). New temperature dependent thermal conductivity data for water-based nanofluids. International Journal of Thermal Sciences, 48(2), 363-371.

Murshed, S. M. S., Leong, K. C., & Yang, C. (2005). Enhanced thermal conductivity of TiO2 - water based nanofluids. International Journal of Thermal Sciences, 44(4), 367-373.

Nguyen, C. T., Desgranges, F., Galanis, N., Roy, G., Maré, T., Boucher, S., & Angue Mintsa, H. (2008). Viscosity data for Al2O3-water nanofluid--hysteresis: is heat transfer enhancement using nanofluids reliable? International Journal of Thermal Sciences, 47(2), 103-111.

Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., & Angue Mintsa, H. (2007). Temperature and particle-size dependent viscosity data for water-based nanofluids- Hysteresis phenomenon. International Journal of Heat and Fluid Flow, 28(6), 1492-1506.

Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11(2), 151-170.

Prasher, R., Bhattacharya, P., & Phelan, P. E. (2006). Brownian motion based convective conductive model for the effective thermal conductivity of nanofluids. Journal of Heat Transfer, 128(6), 588-595.

Prasher, R., Song, D., Wang, J., & Phelan, P. (2006). Measurements of nanofluid viscosity and its implications for thermal applications. Applied Physics Letters, 89(13), 133108 (133101 to 133103).

Rao, G. S., Sharma, K. V., Chary, S. P., Bakar, R. A., Rahman, M. M., Kadirgama, K., & Noor, M. M. (2011). Experimental Study on heat transfer coefficient and friction factor of Al2O3 nanofluid in a packed bed column. Journal of Mechanical Engineering and Sciences, 1: 1-15.

Sundar, L. S., Naik, M. T., Sharma, K. V., Singh, M. K., & Siva Reddy, T. C. (2011). Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Experimental Thermal and Fluid Science, 37: 65-71.

Sundar, L. S., & Sharma, K. V. (2011a). A numerical study heat transfer and friction factor of Al2O3 nanofluid. Journal of Mechanical Engineering and Sciences, 1: 99-112.

Sundar, L. S., & Sharma, K. V. (2011b). Laminar convective heat transfer and friction factor of Al2O3 nanofluid in circular tube fitted with twisted tape inserts. International Journal of Automotive and Mechanical Engineering, 3, 265-278.

Vajjha, R. S., & Das, D. K. (2009). Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International Journal of Heat and Mass Transfer, 52(21-22), 4675-4682.

Vijaya Lakshmi, B., Subrahmanyam, T., Dharma Rao, V., & Sharma, K. V. (2012). Turbulent film condensation of pure vapors flowing normal to a horizontal condenser tube - constant heat flux at the tube wall. International Journal of Automotive and Mechanical Engineering, 4, 455-470.

Wang, X., Xu, X., & Choi, S. U. S. (1999). Thermal conductivity of nanoparticle–fluid mixture. Journal of Thermophysics and Heat Transfer, 13(4): 474-480.

Wen, D., & Ding, Y. (2004). Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer, 47(24), 5181-5188.

Williams, W., Buongiorno, J., & Hu, L.W. (2008). Experimental Investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (Nanofluids) in horizontal tubes. Journal of Heat Transfer, 130(4), 042412-042417.

Yu, W., & Choi, S. U. S. (2003). The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated maxwell model. Journal of Nanoparticle Research, 5(1), 167-171.

Yu, W., France, D. M., Smith, D. S., Singh, D., Timofeeva, E. V., & Routbort, J. L. (2009). Heat transfer to a silicon carbide/water nanofluid. International Journal of Heat and Mass Transfer, 52(15-16), 3606-3612.

Downloads

Published

2013-06-30

How to Cite

[1]
W. Azmi, K. Sharma, R. Mamat, and S. Anuar, “Nanofluid Properties for Forced Convection Heat Transfer: An Overview”, J. Mech. Eng. Sci., vol. 4, no. 1, pp. 397–408, Jun. 2013.

Issue

Section

Review