Experimental investigation on electro-discharge surface modification phenomenon of P20+Ni die steel using green P/M composite electrode

Authors

  • J. L. Ramdatti Production Engineering Department, Government Engineering College, Bhavnagar -364002, Gujarat, India. Phone: +91 9228133940
  • A. V. Gohil Production Engineering Department, Shantilal Shah Engineering College, Bhavnagar - 364060, Gujarat, India
  • K. G. Dave Mechanical Engineering Department, Lalbhai Dalpatbhai Engineering College, Ahmedabad-380015, Gujarat, India

DOI:

https://doi.org/10.15282/jmes.15.3.2021.16.0660

Keywords:

EDM, P/M composite electrode, Response surface methodology (RSM), Surface roughness (SR), Microhardness (MH), Composite desirability

Abstract

In the present work, attempts have been made to optimize the EDM process with an aspect of surface modification of AISI P20+Ni die steel using powder metallurgy (P/M) electrode. Experiments have been performed according to central composite rotatable (CCD) design using response surface methodology (RSM). Effects of compaction pressure (Cp), peak current (Ip), pulse-on time (Ton), and duty cycle (τ) were correlated with surface roughness (SR) and microhardness (MH). Adequacy of mathematical model has been checked by performing ANOVA. Composite desirability approach was used to obtain optimal set of parameters for minimum SR and maximum MH. The errors between the predicted and experimental value of responses at the optimal set of parameters for SR and MH maintain within 5.26% and -3.64% respectively. Scanning electron microscope and energy dispersive spectroscopy analysis confirmed the transfer of P/M electrode material on the work surface. The result indicates three times improvement in microhardness of EDMed surface.

References

J. Simao, H. G. Lee, D. K. Aspinwall, R. C. Dewes, and E. M. Aspinwall, “Workpiece surface modification using electrical discharge machining,” Int. J. Mach. Tools Manuf., vol. 43, no. 2, pp. 121–128, 2003, doi: 10.1016/S0890-6955(02)00187-6.

Fuller John E, Electrical Discharge Machining, in ASM machining Handbook, vol. 16. 1996.

K. A. Altan T, Lilly BW, Konig W, Tonshoff HK, Luttervelt CA, “Advanced techniques for die and mold manufacturing,” Ann. CIRP, vol. 42(2), pp. 707–716, 1993.

B. N. Lahiri, “Understanding EDM technology,” Lect. notes Summer Program. Adv. Manuf. IIT Kharagpur, pp. 61–77, 2001.

M. Y. Ali, A. Banu, M. Salehan, E. Y. T. Adesta, M. Hazza, and M. Shaffiq, “Dimensional accuracy in dry micro wire electrical discharge machining,” J. Mech. Eng. Sci., vol. 12(1), pp. 3321 2018, doi: 10.15282/jmes.12.1.2018.4.0298.

De Bruyn HE, “Slope control – a great improvement in spark erosion,” Ann. CIRP, vol. 16, pp. 183–186, 1968.

H. S. S. P. C. Pandey, Modern Machining Processes. 1995.

V. K. Jain, Advanced Machining Processes. Allied Publishers,New Delhi, India, 2004.

M. A. R. Khan, M. M. Rahman, K. Kadirgama, M. A. Maleque, and M. Ishak, “Prediction of surface roughness of Ti-6Al-4V in electrical discharge machining: A regression model,” J. Mech. Eng. Sci., vol. 1(9), pp. 16-24, 2011, doi: 10.15282/jmes.1.2011.2.0002.

M. Y. Ali, M. A. Moudood, M. A. Maleque, M. Hazza, and E. Y. T. Adesta, “Electro-discharge machining of alumina: Investigation of material removal rate and surface roughness,” J. Mech. Eng. Sci., vol. 10, pp. 16, 2017, doi: 10.15282/jmes.11.4.2017.5.0271.

J. L. Ramdatti and A. V. Gohil, “Optimization of surface modification phenomenon for P20+Ni die steel sing EDM with P/M composite electrode,” pp. 689-697, 2020, doi: 10.1007/978-981-13-8196-6_60.

H. K. Kansal, S. Singh, and P. Kumar, “Application of Taguchi method for optimisation of powder mixed electrical discharge machining,” Int. J. Manuf. Technol. Manag., vol. 7, pp. 329-341, 2005, doi: 10.1504/IJMTM.2005.006836.

C. J. H. J. R. Crookall, “Electro-discharge machining – the state of the art,” Ann. CIRP, vol. 20 (1), pp. 113–120, 1971.

B. Mallick, B. R. Sarkar, B. Doloi, and B. Bhattacharyya, “Analysis on the effect of ECDM process parameters during micro-machining of glass using genetic algorithm,” J. Mech. Eng. Sci., 2018, doi: 10.15282/jmes.12.3.2018.13.0344.

J. M. Pujara, K. D. Kothari, and A. V. Gohil, “An investigation of material removal rate and kerf on WEDM through grey relational analysis,” J. Mech. Eng. Sci., vol. 12(2), pp. 3633-3644, 2018, doi: 10.15282/jmes.12.2.2018.10.0322.

G. B. F. X. Zeng, H Yu., “Failure Analysis of Die,” Beijing Mech. Ind. Press., 1987.

B. M. Schumacher, “EDM technology for precision workpieces with excellent surface quality.,” 1983.

Z. Z.-Z. C. Peiyuan, “life and material of mold,” Wuhan Wuhan Inst. Technol. Lect., 1994.

Z. Luyang, “Die failure and protection,” Beijing China Mach. Press, 1998.

N. Mohri, N. Saito, M. Higashi, and N. Kinoshita, “A new process of finish machining on free surface by EDM methods,” CIRP Ann. - Manuf. Technol., vol. 40(1), pp. 207-210,1991, doi: 10.1016/S0007-8506(07)61969-6.

G. S. B. Singh, P. Singh, G. Tejpal, “An experimental study of surface roughness of H-11 in EDM process using copper tool electrode,” Int. J. Adv. Eng. Technol., vol. 3 (4), pp. 30–33, 2012.

E. Unses and C. Cogun, “Improvement of electric discharge machining (EDM) performance of Ti-6Al-4V alloy with added graphite powder to dielectric,” Stroj. Vestnik/Journal Mech. Eng., vol. 61, no. 6, 2015, doi: 10.5545/sv-jme.2015.2460.

P. K. Patowari, P. Saha, and P. K. Mishra, “Taguchi analysis of surface modification technique using W-Cu powder metallurgy sintered tools in EDM and characterization of the deposited layer,” Int. J. Adv. Manuf. Technol., 2011, doi: 10.1007/s00170-010-2966-y.

M. B. Ndaliman, A. A. Khan, and M. Y. Ali, “Formation of nitrides and carbides on titanium alloy surface through EDM,” vol. 576, pp. 7-10, 2012, doi: 10.4028/www.scientific.net/AMR.576.7.

A. Gangadhar, M. S. Shunmugam, and P. K. Philip, “Surface modification in electrodischarge processing with a powder compact tool electrode,” Wear, 1991, doi: 10.1016/0043-1648(91)90084-8.

N. Beri, S. Maheshwari, C. Sharma, and A. Kumar, “Performance evaluation of powder metallurgy electrode in electrical discharge machining of AISI D2 steel using Taguchi method,” Int. J. Mech. Aerospace, Ind. Mechatron. Manuf. Eng., vol. 2, pp. 225-229, 2008.

A. Bhattacharya, A. Batish, and N. Kumar, “Surface characterization and material migration during surface modification of die steels with silicon, graphite and tungsten powder in EDM process,” J. Mech. Sci. Technol., 2013, doi: 10.1007/s12206-012-0883-8.

A. S. Gill and S. Kumar, “Surface roughness and microhardness evaluation for EDM with Cu-Mn powder metallurgy tool,” Mater. Manuf. Process., vol. 31, no. 4, pp. 514-521, 2016, doi: 10.1080/10426914.2015.1070412.

S. Kumar, R. Singh, T. P. Singh, and B. L. Sethi, “Comparison of material transfer in electrical discharge machining of AISI H13 die steel,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2009, doi: 10.1243/09544062JMES1227.

T. A. El-Taweel, “Multi-response optimization of EDM with Al–Cu–Si–TiC P/M composite electrode,” Int. J. Adv. Manuf. Technol., vol. 44, pp. 100–113, 2009.

K. Furutania, A. Saneto, H. Takezawa, N. Mohri, and H. Miyake, “Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid,” Precis. Eng., 2001, doi: 10.1016/S0141-6359(00)00068-4.

P. Peças and E. Henriques, “Influence of silicon powder-mixed dielectric on conventional electrical discharge machining,” Int. J. Mach. Tools Manuf., 2003, doi: 10.1016/S0890-6955(03)00169-X.

A. Das and J. P. Misra, “Experimental investigation on surface modification of aluminum by electric discharge coating process using TiC/Cu green compact tool-electrode,” Mach. Sci. Technol., 2012, doi: 10.1080/10910344.2012.731951.

A. Batish, A. Bhattacharya, V. K. Singla, and G. Singh, “Study of material transfer mechanism in die steels using powder mixed electric discharge machining,” 2012, doi: 10.1080/10426914.2011.585498.

S. Kumar and U. Batra, “Surface modification of die steel materials by EDM method using tungsten powder-mixed dielectric,” J. Manuf. Process., 2012, doi: 10.1016/j.jmapro.2011.09.002.

P. Senthil, S. Vinodh, and A. K. Singh, “Parametric optimisation of EDM on Al-Cu/TiB2 in-situ metal matrix composites using TOPSIS method,” Int. J. Mach. Mach. Mater., 2014, doi: 10.1504/IJMMM.2014.063922.

G. Derringer and R. Suich, “Simultaneous Optimization of Several Response Variables,” J. Qual. Technol., 1980, doi: 10.1080/00224065.1980.11980968.

G. Talla, D. K. Sahoo, S. Gangopadhyay, and C. K. Biswas, “Modeling and multi-objective optimization of powder mixed electric discharge machining process of aluminum/alumina metal matrix composite,” Eng. Sci. Technol. an Int. J., 2015, doi: 10.1016/j.jestch.2015.01.007.

S. Tripathy and D. K. Tripathy, “Multi-attribute optimization of machining process parameters in powder mixed electro-discharge machining using TOPSIS and grey relational analysis,” Eng. Sci. Technol. an Int. J., vol. 19(1), pp. 62-70, 2016, doi: 10.1016/j.jestch.2015.07.010.

J. H. Jung and W. T. Kwon, “Optimization of EDM process for multiple performance characteristics using Taguchi method and Grey relational analysis,” J. Mech. Sci. Technol., vol. 24(5), pp. 1083-1090, 2010, doi: 10.1007/s12206-010-0305-8.

Y. Y. Tsai and C. T. Lu, “Influence of current impulse on machining characteristics in EDM,” vol. 21(10), pp. 1617, 2007, doi: 10.1007/BF03177384.

Downloads

Published

2021-09-19 — Updated on 2021-09-19

Versions

How to Cite

[1]
J. L. RAMDATTI, A. V. Gohil, and K. G. Dave, “Experimental investigation on electro-discharge surface modification phenomenon of P20+Ni die steel using green P/M composite electrode”, J. Mech. Eng. Sci., vol. 15, no. 3, pp. 8390–8404, Sep. 2021.