Characteristic of thermoplastics corn starch composite reinforced short pineapple leaf fibre by using laminates method
DOI:
https://doi.org/10.15282/jmes.14.3.2020.08.0553Keywords:
Bio-composites, Biodegradable, Thermoplastic corn starch, Pineapple leaf fibreAbstract
In recent years, the increased demand of biodegradable polymers has sparked the research interest in the development of alternatives to conventional polymers. As such, starch considerably one of the best substitutes to the non-degradable polymers owing to its advantages. The main purpose of this study is to investigate the mechanical, physical and environmental characterization of bio-composites, which is in this case the thermoplastic corn starch (TPCS) reinforced with a 2 mm length of pineapple leaf fibre (PALF). The selection of different weight percentages in the range of 20 to 60 weight percentage (wt.%) of PALF contents were applied in this work. The mixtures of TPCS with different wt.% of PALF were made by using a hot compression moulding at 165 °C for 15 minutes. Several testing has been performed to determine the bio-composites characteristics. The results show that by incorporating 40 wt.% loading of PALF, the tensile and modulus strength has increased to the maximum. It is also seen that there is an inverse relationship between the moisture content and the wt.% loading of PALF. However, the water and moisture absorption show a direct relationship with wt.% loading of PALF. Meanwhile, the soil burial decreases when the wt.% loadings of PALF increase while the results for water solubility suggest vice versa. It is also found that the TPCS with 40 wt.% of PALF have a good miscibility between matrix/fibre in the bio-composites.
References
R. Jumaidin, S. M. Sapuan, M. S. Firdaus, A. F. Ab Ghani, M. Y. Yaakob, H. Z. Nazri, F. A. Munir, A. A. Zakaria, N. Jenal, “Effect of agar on dynamic mechanical properties of thermoplastic sugar palm starch: Thermal behavior,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 47, no. 1, pp. 89–96, 2018.
M. Drzal, L. T., Mohanty, A. K., & Misra, “Bio-Composite Materials As Alternatives To Petroleum-Based Composites for Automotive Applications,” Magnesium, vol. 40, no. 60, pp. 1–3, 2001.
M. L. Sanyang, S. M. Sapuan, M. Jawaid, M. R. Ishak, and J. Sahari, “Effect of Plasticizer Type and Concentration on Dynamic Mechanical Properties of Sugar Palm Starch–Based Films,” Int. J. Polym. Anal. Charact., vol. 20, no. 7, pp. 627–636, 2015.
A. Jiménez, M. J. Fabra, P. Talens, and A. Chiralt, “Edible and Biodegradable Starch Films: A Review,” Food Bioprocess Technol., vol. 5, no. 6, pp. 2058–2076, 2012.
J. Sahari, S. M. Sapuan, E. S. Zainudin, and M. A. Maleque, “Thermo-mechanical behaviors of thermoplastic starch derived from sugar palm tree (Arenga pinnata),” Carbohydr. Polym., vol. 92, no. 2, pp. 1711–1716, 2013.
F. Xie, E. Pollet, P. J. Halley, and L. Avérous, “Starch-based nano-biocomposites,” Prog. Polym. Sci., vol. 38, no. 10–11, pp. 1590–1628, 2013.
P. Threepopnatkul, N. Kaerkitcha, and N. Athipongarporn, “Effect of surface treatment on performance of pineapple leaf fiber-polycarbonate composites,” Compos. Part B Eng., vol. 40, no. 7, pp. 628–632, 2009.
K. L. Pickering, M. G. A. Efendy, and T. M. Le, “A review of recent developments in natural fibre composites and their mechanical performance,” Composites Part A: Applied Science and Manufacturing. pp. 98-112, 2016.
A. O’Donnell, M. . Dweib, and R. . Wool, “Natural fiber composites with plant oil-based resin,” Compos. Sci. Technol., vol. 103, no. 3, pp. 1135–1145, 2004.
M. Asim, K. Abdan, M. Jawaid, M.Nasir, Z. Dashtizadeh, M. R. Ishak, M. E. Hoque, “A Review on Pineapple Leaves Fibre and Its Composites,” Int. J. Polym. Sci., vol. 2015, pp. 1–16, 2015.
L. U. Devi, K. Joseph, K. C. M. Nair, and S. Thomas, “Ageing studies of pineapple leaf fiber-reinforced polyester composites,” J. Appl. Polym. Sci., vol. 94, no. 2, pp. 503–510, 2004.
M. S. Alwani, A. Khalil, N. Islam, W. O. W. Nadirah, and R. Dungani, “Fundamental approaches for the application of pineapple leaf fiber in high performance reinforced composites,” no. 11, pp. 38–44, 2014.
X. Ma, J. Yu, and J. F. Kennedy, “Studies on the properties of natural fibers-reinforced thermoplastic starch composites,” Carbohydr. Polym., vol. 62, no. 1, pp. 19–24, 2005.
X. Z. Mo, Y. X. Zhong, C. Q. Liang, and S. J. Yu, “Studies on the Properties of Banana Fibers-Reinforced Thermoplastic Cassava Starch Composites: Preliminary Results,” Adv. Mater. Res., vol. 87–88, pp. 439–444, 2009.
R. Manríquez-González, S. Iwakiri, T. S. Flores-Sahagun, G. B. de Muniz, S. G. Kestur, and M. G. Lomelí-Ramírez, “Bio-composites of cassava starch-green coconut fiber: Part II—Structure and properties,” Carbohydr. Polym., vol. 102, pp. 576–583, 2013.
G. Moad, “Chemical modification of starch by reactive extrusion,” Prog. Polym. Sci., vol. 36, no. 2, pp. 218–237, 2011.
L. Yu and G. Christie, “Microstructure and mechanical properties of orientated thermoplastic starches,” J. Mater. Sci., vol. 40, no. 1, pp. 111–116, 2005.
J. Li, X. Luo, X. Lin, and Y. Zhou, “Comparative study on the blends of PBS/thermoplastic starch prepared from waxy and normal corn starches,” Starch/Staerke, vol. 65, no. 9–10, pp. 831–839, 2013.
J. Sahari, S. M. Sapuan, E. S. Zainudin, and M. A. Maleque, “Physico-chemical and thermal properties of starch derived from sugar palm tree (Arenga pinnata),” Asian J. Chem., vol. 26, no. 4, pp. 955–959, 2014.
N. A. Hamid, N. H. N. Abdullah, M. R. Mansor, M. A. M. Rosli, and M. Z. Akop, “An Experimental Study of The Influence of Fiber Architecture on The Strength of Polymer Composite Material,” J. Mech. Eng. Technol., vol. 2, no. 2, 2009.
R. Yahaya, S. M. Sapuan, M. Jawaid, Z. Leman, and E. S. Zainudin, “Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf-aramid hybrid laminated composites,” Mater. Des., vol. 67, pp. 173–179, 2015.
M. Jawaid and H. P. S. Abdul Khalil, “Effect of layering pattern on the dynamics mechanical properties and thermal degradation of oil palm-jute fibres reinforced epoxy hybrid composite,” bioresources.com, vol. 6, no. 3, pp. 2309–2322, 2011.
M. R. Mansor, M. A. A. Hadi, M. J. Taufiq, M. A. Salim, and A. Saad, “Fabrication of hybrid oil palm empty fruit bunch and kenaf reinforced epoxy composite panels at varying fiber layering sequence,” 1st Colloq. Pap. Adv. Mater. Mech. Eng. Res., vol. 1, pp. 42, 2018.
N. H. Zakaria, Z. Ngali, and M. Z. Selamat, “Preliminary Investigation to Determine the Suitable Mixture Composition for Corn Starch Matrix,” IOP Conf. Ser. Mater. Sci. Eng., pp. 1-8, 2016.
R. Punyamurthy, D. Sampathkumar, R. P. G. Ranganagowda, B. Bennehalli, and C. V. Srinivasa, “Mechanical properties of abaca fiber reinforced polypropylene composites: Effect of chemical treatment by benzenediazonium chloride,” J. King Saud Univ. - Eng. Sci., vol. 29, no. 3, pp. 289–294, 2017.
M. Z. Selamat, M. Razi, A. N. Kasim, S. Dharmalingam, and A. Putra, “Mechanical Properties of Starch Composite Reinforced by Pineapple Leaf Fiber (PLF) from Josapine Cultivar,” vol. 11, no. 16, pp. 9783–9788, 2016.
A. N. Kasim, M. Z. Selamat, M. A. M. Daud, M. Y. Yaakob, A. Putra, and D. Sivakumar, “Mechanical properties of polypropylene composites reinforced with alkaline treated pineapple leaf fibre from josapine cultivar,” Int. J. Automot. Mech. Eng., vol. 13, no. 1, pp. 3157–3167, 2016.
X. H. Loh, M. A. Mohd Daud, and M. Z. Selamat, “Mechanical properties of kenaf/polypropylene composite: An investigation,” J. Mech. Eng. Sci., vol. 10, no. 2, pp. 2098–2110, 2016.
Z. Salleh, Y. M. Taib, K. M. Hyie, M. Mihat, M. N. Berhan, and M. A. A. Ghani, “Fracture toughness investigation on long kenaf/woven glass hybrid composite due to water absorption effect,” in Procedia Engineering, 2012.
R. Jumaidin, S. M. Sapuan, M. Jawaid, M. R. Ishak, and J. Sahari, “Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites,” Int. J. Biol. Macromol., vol. 97, pp. 606–615, 2017.
J. Sahari, S. M. Sapuan, E. S. Zainudin, and M. A. Maleque, “Mechanical and thermal properties of environmentally friendly composites derived from sugar palm tree,” Mater. Des., vol. 49, pp. 285–289, 2013.
P. Kanmani and J. Rhim, “Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract,” vol. 102, pp. 708–716, 2014.
M. Bootklad and K. Kaewtatip, “Biodegradation of thermoplastic starch/eggshell powder composites,” Carbohydr. Polym., vol. 97, no. 2, pp. 315–320, 2013.
N. Razali, S. M. Sapuan, M. Jawaid, M. R. Ishak, and Y. Lazim, “Mechanical and Thermal Properties of Roselle Fibre Reinforced Vinyl Ester Composites,” BioResources, vol. 11, no. 4, pp. 9325–9339, 2016.
G. Rajesh, G. Siripurapu, and A. Lella, “Evaluating Tensile Properties of Successive Alkali Treated Continuous Pineapple Leaf Fiber Reinforced Polyester Composites,” Mater. Today Proc., vol. 5, no. 5, pp. 13146–13151, 2018.
J.Santhosh, N.Balanarasimman, R.chandrasekar, and S.Raja, “Study of Properties of Banana Fiber Reinforced Composites,” Int. J. Res. Eng. Technol., vol. 03, no. 11, pp. 144–150, 2015.
R. Nadlene, S. M. Sapuan, M. Jawaid, M. R. Ishak, and L. Yusriah, “A Study on Chemical Composition, Physical, Tensile, Morphological, and Thermal Properties of Roselle Fibre: Effect of Fibre Maturity,” BioResources, vol. 10, no. 1, pp. 1803–1823, 2015.
C. V Srinivasa and K. N. Bharath, “Effect of Alkali Treatment on Impact Behavior of Areca Fibers Reinforced Polymer Composites Effect of Alkali Treatment on Impact Behavior of Areca Fibers Reinforced Polymer Composites,” vol. 7, no. 4, pp. 875–879, 2015.
R. Jumaidin, S. M. Sapuan, M. Jawaid, M. R. Ishak, and J. Sahari, “Characteristics of Eucheuma cottonii waste from East Malaysia: physical, thermal and chemical composition,” Eur. J. Phycol., vol. 52, no. 2, pp. 200–207, 2017.
K. Ramanaiah, A. V. Ratna Prasad, and K. Hema Chandra Reddy, “Effect of fiber loading on mechanical properties of borassus seed shoot fiber reinforced polyester composites,” J. Mater. Environ. Sci., vol. 3, no. 2, pp. 374–378, 2012.
R. Jumaidin, S. M. Sapuan, M. Jawaid, M. R. Ishak, and J. Sahari, “Effect of seaweed on physical properties of thermoplastic sugar palm starch/agar composites,” J. Mech. Eng. Sci., vol. 10, no. 3, pp. 2214–2225, 2016.
H. Ibrahim, M. Farag, H. Megahed, and S. Mehanny, “Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers,” Carbohydr. Polym., vol. 101, no. 1, pp. 11–19, 2014.
R. Siakeng, M. Jawaid, H. Ariffin, and S. M. Sapuan, “Physical properties of coir and pineapple leaf fibre reinforced polylactic acid hybrid composites,” IOP Conf. Ser. Mater. Sci. Eng., vol. 290, no. 1, 2018.
J. Guan and M. A. Hanna, “Extruding foams from corn starch acetate and native corn starch,” Biomacromolecules, vol. 5, no. 6, pp. 2329–2339, 2004.
N. F. Magalhães and C. T. Andrade, “Thermoplastic corn starch/clay hybrids: Effect of clay type and content on physical properties,” Carbohydr. Polym., vol. 75, no. 4, pp. 712–718, 2009.
Z. Leman, S. M. Sapuan, A. M. Saifol, M. A. Maleque, and M. M. H. M. Ahmad, “Materials & Design Moisture absorption behavior of sugar palm fiber reinforced epoxy composites,” vol. 29, pp. 1666–1670, 2008.
D. Mathivanan, H. Norfazilah, J. P. Siregar, M. R. M. Rejab, D. Bachtiar, and T. Cionita, “The study of mechanical properties of pineapple leaf fibre reinforced tapioca based bioplastic resin composite,” MATEC Web Conf., vol. 74, pp. 1-4, 2016.
A. Danladi and J. Shu’aib, “Fabrication and Properties of Pineapple Fibre / High Density Polyethylene Composites,” Am. J. Mater. Sci., vol. 4, no. 3, pp. 139–143, 2014.
C. H. Lee, S. M. Sapuan, J. H. Lee, and M. R. Hassan, “Mechanical properties of kenaf fibre reinforced floreon biocomposites with magnesium hydroxide filler,” J. Mech. Eng. Sci., vol. 10, no. 3, pp. 2234–2248, 2016.
A. C. Flores, E. R. Punzalan, and N. G. Ambangan, “Effects of Kappa-Carrageenan on the Physico-Chemical Properties of Thermoplastic Starch,” Kimika, vol. 26, no. 1, pp. 11–17, 2015.
R. Jumaidin, S. M. Sapuan, M. Jawaid, M. R. Ishak, and J. Sahari, “Effect of seaweed on mechanical, thermal, and biodegradation properties of thermoplastic sugar palm starch/agar composites,” Int. J. Biol. Macromol., vol. 99, pp. 265–273, 2017.
J. Prachayawarakorn, N. Limsiriwong, R. Kongjindamunee, and S. Surakit, “Effect of Agar and Cotton Fiber on Properties of Thermoplastic Waxy Rice Starch Composites,” J. Polym. Environ., vol. 20, no. 1, pp. 88–95, 2012.
A. Kalambettu, A. Damodaran, S. Dharmalingam, and M. T. Vallam, “Evaluation of Biodegradation of Pineapple Leaf Fiber Reinforced PVA Composites,” J. Nat. Fibers, vol. 12, no. 1, pp. 39–51, 2015.
Z. J. A. Amer and A. Q. Saeed, “Soil Burial Degradation of Polypropylene/Starch Blend,” Int. J. of Technical Research and Applications, vol 3, no 1, pp. 91-96, 2015.
S. Öztürk, “Effect of fiber loading on the mechanical properties of kenaf and fiberfrax fiber-reinforced phenol-formaldehyde composites,” J. Compos. Mater., vol. 44, no. 19, pp. 2265–2288, 2010.
R. Nadlene, S. M. Sapuan, M. Jawaid, M. R. Ishak, and L. Yusriah, “The Effects of Chemical Treatment on the Structural and Thermal, Physical, and Mechanical and Morphological Properties of Roselle Fiber-Reinforced Vinyl Ester Composites,” Polym. Compos., no. 36, pp. 1230–1241, 2016.
M. F. Rosa, B. Chiou, E. S. Medeiros, D. F. Wood, T. G. Williams, L. H. C. Mattaso, W. J. Orts, S. H. Imam, “Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites,” Bioresour. Technol., vol. 100, no. 21, pp. 5196–5202, 2009.
K. Senthilkumar, N. Rajini, N. Saba, M. Chandrasekar, M. Jawaid, and S. Siengchin, “Effect of Alkali Treatment on Mechanical and Morphological Properties of Pineapple Leaf Fibre/Polyester Composites,” J. Polym. Environ., pp. 1-11, 2019.
ASTM D638-00 2001. Standard Test Method for Tensile Properties of Plastics. American Society for Testing Materials.
ASTM D256-02 2002. Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. American Society for Testing Materials.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.